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PHYS 3446 – Lecture #3
Tueday, Jan. 27 2015

Dr. Brandt

1. Rutherford Scattering with Coulomb force

2. Scattering Cross Section

3. Differential Cross Section of Rutherford Scattering

4. Measurement of Cross Sections
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Elastic Scattering

• From momentum and  kinetic energy conservation
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Analysis Case 1
• If mt<<ma, 

– change of momentum of alpha particle is negligible 
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• If mt>>ma, 

– alpha particle deflected backwards  

Analysis Case 2
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Rutherford Scattering with EM Force 1

• Need to take into account the EM force between the a and 

the atom 

• The Coulomb force is a central force->conservative force

• The Coulomb potential energy between particles with Ze and 

Z’e electrical charge, separated by a distance r is

• Since the total  energy is conserved, 
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• From the energy relation, we obtain

• From angular momentum defn. , we obtain an equation of motion , 
where  = angle between –x axis and radial vector”

• From energy conservation, we obtain another equation of motion

Rutherford Scattering with EM Force 2
• The distance vector r is always the 

same direction as the force 
throughout the entire motion, so 
the net torque (rxF) is 0.

• Since there is no net torque, the 
angular momentum (l=rxp) is 
conserved.  The magnitude of 
the angular momentum is l=mvb.
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Rutherford Scattering with EM Force 3
• Rearranging the terms, we obtain

• and
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Eq. 1.18

Asymptotic 

scattering 

angle:
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Eq. 1.19

Using 1.18 in the following

d/dt=L/mr2=d /dr*dr/dt gives
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Rutherford Scattering with EM Force 4
• What happens at the DCA?

– Kinetic energy goes to  0.

– Consider the case where the alpha particle is incident on the z-
axis, it would reach the DCA, stop, and reverse direction!

– From Eq. 1.18, we can obtain 

– This allows us to determine DCA for a given potential and 0.

• Substituting 1.19 into the scattering angle equation gives:
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Rutherford Scattering with EM Force 5
• For a Coulomb potential 

• DCA can be obtained for a given impact parameter b,

• And the angular distribution becomes
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Rutherford Scattering with EM Force 6
• Replace the variable 1/r=x, and performing the 

integration, we obtain 

• This can be rewritten

• Solving this for b, we obtain
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Rutherford Scattering with EM Force 7

• From the solution for b, we can learn the following 
1. For fixed b and E 

– The scattering is larger for a larger value of Z or Z’ (large charge in 
projectile or target)
– Makes perfect sense since Coulomb potential is stronger with larger Z.

– Results in larger deflection.

2. For fixed b, Z and Z’
– The scattering angle is larger when E is smaller.

– If particle has low energy, its velocity is smaller

– Spends more time in the potential, suffering greater deflection

3. For fixed Z, Z’, and E
– The scattering angle is larger for smaller impact parameter b

– Makes perfect sense also, since as the incident particle is closer to the 
nucleus, it feels stronger Coulomb force.
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What do we learn from scattering?
• Scattering of a particle in a potential is completely 

determined when we know both  
– The impact parameter, b, and 

– The energy of the incident particle, E

• For a fixed energy, the deflection is defined by 
– The impact parameter, b. 

• What do we need to perform a scattering experiment?
– Incident flux of beam particles with known E

– Device that can measure number of scattered particles at various 
angle, q.

– Measurements of the number of scattered particles reflect 
• Impact parameters of the incident particles 

• The effective size of the scattering center

• By measuring the scattering angle q, we can learn about the 
potential or the forces between the target and the projectile
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All these

land here

• N0: The number of particles incident on the target foil per unit area per 
unit time.

• Any incident particles entering with impact parameter b and b+db will 
scatter to the angle q and q-dq.

• In other words, they scatter into the solid angle dW 2sinqdq.

• So the number of particles scattered into the solid angle dW per unit 
time is 2N0bdb.

• Note:have assumed thin foil, and large separation between nuclei—
why?

Scattering Cross Section
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Scattering Cross Section

• For a central potential

– Such as Coulomb potential

– Which has spherical symmetry

• The scattering center presents an effective 

transverse cross-sectional area of

• For the particles to scatter into q and q+dq

2 bdb  
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Scattering Cross Section
• In more generalized cases,  depends on both q & f.

• With a spherical symmetry, f can be integrated out:
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Scattering Cross Section
• For a central potential, measuring the yield as a function of q 

the differential cross section) is equivalent to measuring the 
entire effect of the scattering 

• So what is the physical meaning of the differential cross 
section?

 Measurement of yield as a function of specific experimental 
variables

This is equivalent to measuring the probability of occurrence 
of a physical process in a specific kinematic phase space

• Cross sections are measured in the unit of barns:

1 barn  Where does this 

come from?

-24 210 cm

Cross sectional area of a typical nucleus! nanobarn

picobarn

femptobarn
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Cross Section of Rutherford Scattering
• The impact parameter in Rutherford scattering is

• Thus,

• Differential cross section of Rutherford scattering is
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what happened? can you say “trig identity?” sin(2x)=2sin(x) cos(x)

plot/applets
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Measuring Cross Sections
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• This is a general expression for any 

scattering process, independent of the 

theory

• This gives an observed counts per second
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