PHYS 3446 - Lecture \#3

$$
\begin{gathered}
\text { Tueday, Jan. } 272015 \\
\text { Dr. Brandt }
\end{gathered}
$$

1. Rutherford Scattering with Coulomb force
2. Scattering Cross Section
3. Differential Cross Section of Rutherford Scattering
4. Measurement of Cross Sections

Elastic Scattering

- From momentum and kinetic energy conservation

$$
\begin{gathered}
v_{0}^{2}=v_{\alpha}^{2}+\frac{m_{t}}{m_{\alpha}} v_{t}^{2} \quad{ }^{* * * E q . ~ 1.2 ~} \\
v_{t}^{2}\left(1-\frac{m_{t}}{m_{\alpha}}\right)=2 \vec{v}_{\alpha} \cdot \vec{v}_{t}{ }^{* * * E q . ~ 1.3}
\end{gathered}
$$

Analysis Case 1
 - If $m_{t} \ll m_{\alpha}$,

$$
v_{t}^{2}\left(1-\frac{m_{t}}{m_{\alpha}}\right)=2 \vec{v}_{\alpha} \cdot \vec{v}_{t}
$$

- change of momentum of alpha particle is negligible

Analysis Case 2

- If $m_{t} \gg m_{\alpha}$,
- alpha particle deflected backwards

Rutherford Scattering with EM Force 1

- Need to take into account the EM force between the α and the atom
- The Coulomb force is a central force->conservative force
- The Coulomb potential energy between particles with Re and Z'e electrical charge, separated by a distance r is

$$
V(r)=\frac{Z Z^{\prime} e^{2}}{r}
$$

- Since the total energy is conserved,

$$
E=\frac{1}{2} m v_{0}^{2}=\text { constant }>0 \Rightarrow \mathrm{v}_{0}=\sqrt{\frac{2 E}{m}}
$$

Rutherford Scattering with EM Force 2

- The distance vector \mathbf{r} is always the same direction as the force throughout the entire motion, so the net torque (rxF) is 0 .
- Since there is no net torque, the angular momentum (l=rxp) is conserved. \rightarrow The magnitude of the angular momentum is $l=m v b$.
- From the energy relation, we obtain

$$
l=m \sqrt{2 E / m} \cdot b=b \sqrt{2 m E} \Rightarrow b^{2}=l^{2} / 2 m E
$$

- From angular momentum defn. , we obtain an equation of motion where $\chi=$ angle between $-x$ axis and radial vector" $d \chi / d t=l / m r^{2}$
- From energy conservation, we obtain another equation of motion

$$
\begin{aligned}
& E=\frac{1}{2} m\left(\frac{d r}{d t}\right)^{2} \\
& +\frac{1}{2} m r^{2}\left(\frac{d \chi}{d t}\right)^{2}+V(r)
\end{aligned} \quad \square \frac{d r}{d t}= \pm \sqrt{\frac{2}{m}\left(E-V(r)\left(\frac{l^{2}}{2 m r^{2}}\right)\right.} \text { PHYs 3446 Andrew Brandt } \quad \text { Eq. } 1.17 \text { Eftrifiugal barier }
$$

Rutherford Scattering with EM Force 3

- Rearranging the terms, we obtain

Rutherford Scattering with EM Force 4

- What happens at the DCA?
- Kinetic energy goes to $0 .\left.\quad \frac{d r}{d t}\right|_{r=r_{0}}=0$
- Consider the case where the alpha particle is incident on the zaxis, it would reach the DCA, stop, and reverse direction!
- From Eq. 1.18, we can obtain

$$
r_{0}^{2}\left(1-\frac{V\left(r_{0}\right)}{E}\right)-b^{2}=0
$$

- This allows us to determine DCA for a given potential and χ_{0}.
- Substituting 1.19 into the scattering angle equation gives:

$$
\theta=\pi-2 \chi_{0}=\pi-2 b \int_{r_{0}}^{\infty} \frac{d r}{r\left[r^{2}\left(1-\frac{V(r)}{E}\right)-b^{2}\right]^{1 / 2}}
$$

Rutherford Scattering with EM Force 5

- For a Coulomb potential

$$
V(r)=\frac{Z Z^{\prime} e^{2}}{r}
$$

- DCA can be obtained for a given impact parameter b,

$$
r_{0}=\frac{Z Z^{\prime} e^{2} / E}{2}\left(1+\sqrt{1+4 b^{2} E^{2} /\left(Z Z^{\prime} e^{2}\right)^{2}}\right)
$$

- And the angular distribution becomes

$$
\theta=\pi-2 b \int_{r_{0}}^{\infty} \frac{d r}{r\left[r^{2}\left(1-\frac{Z Z}{r E} e^{2}\right)-b^{2}\right]^{1 / 2}}
$$

Rutherford Scattering with EM Force 6

- Replace the variable $1 / r=x$, and performing the integration, we obtain

$$
\theta=\pi+2 b \cos ^{-1}\left(\frac{1}{\sqrt{1+4 b^{2} E^{2} /\left(Z Z^{\prime} e^{2}\right)^{2}}}\right)
$$

- This can be rewritten

$$
\frac{1}{\sqrt{1+4 b^{2} E^{2} /\left(Z Z^{\prime} e^{2}\right)^{2}}}=\cos \left(\frac{\theta-\pi}{2}\right)
$$

- Solving this for b, we obtain

$$
b=\frac{Z Z^{\prime} e^{2}}{2 E} \cot \frac{\theta}{2}
$$

Rutherford Scattering with EM Force 7

$$
b=\frac{Z Z^{\prime} e^{2}}{2 E} \cot \frac{\theta}{2}
$$

- From the solution for b, we can learn the following

1. For fixed b and E

- The scattering is larger for a larger value of Z or Z^{\prime} (large charge in projectile or target)
- Makes perfect sense since Coulomb potential is stronger with larger Z.
- Results in larger deflection.

2. For fixed b, Z and $Z '$

- The scattering angle is larger when E is smaller.
- If particle has low energy, its velocity is smaller
- Spends more time in the potential, suffering greater deflection

3. For fixed Z, Z^{\prime}, and E

- The scattering angle is larger for smaller impact parameter b
- Makes perfect sense also, since as the incident particle is closer to the nucleus, it feels stronger Coulomb force.

What do we learn from scattering?

- Scattering of a particle in a potential is completely determined when we know both
- The impact parameter, b, and

$$
b=\frac{Z Z^{\prime} e^{2}}{2 E} \cot \frac{\theta}{2}
$$

- For a fixed energy, the deflection is defined by
- The impact parameter, b.
- What do we need to perform a scattering experiment?
- Incident flux of beam particles with known E
- Device that can measure number of scattered particles at various angle, θ.
- Measurements of the number of scattered particles reflect
- Impact parameters of the incident particles
- The effective size of the scattering center
- By measuring the scattering angle θ, we can learn about the potential or the forces between the target and the projectile

Scattering Cross Section

- N_{0} : The number of particles incident on the target foil per unit area per unit time.
- Any incident particles entering with impact parameter b and $b+d b$ will scatter to the angle θ and θ-d θ.
- In other words, they scatter into the solid angle $\mathrm{d} \Omega(=2 \pi \sin \theta \mathrm{~d} \theta)$.
- So the number of particles scattered into the solid angle $\mathrm{d} \Omega$ per unit time is $2 \pi \mathrm{~N}_{0} \mathrm{bdb}$.
- Note:have assumed thin foil, and large separation between nucleiwhy?

Scattering Cross Section

- For a central potential
-Such as Coulomb potential
- Which has spherical symmetry
- The scattering center presents an effective transverse cross-sectional area of

$$
\Delta \sigma=2 \pi b d b
$$

- For the particles to scatter into θ and $\theta+d \theta$

Scattering Cross Section

- In more generalized cases, $\Delta \sigma$ depends on both θ \& ϕ.

$$
\Delta \sigma(\theta, \phi)=b d b d \phi=\bigodot_{\text {Why negative? }}^{d \sigma}(\theta, \phi) d \Omega=-\frac{d \sigma}{d \Omega}(\theta, \phi) \sin \theta d \theta d \phi
$$

- With a spherical symmetry, ϕ can be integrated out:

$$
\Delta \sigma(\theta)=-\frac{d \sigma}{d \Omega}(\theta) 2 \pi \sin \theta d \theta=2 \pi b d b
$$

What is the dimension of the differential cross section?

Scattering Cross Section

- For a central potential, measuring the yield as a function of θ (the differential cross section) is equivalent to measuring the entire effect of the scattering
- So what is the physical meaning of the differential cross section?
\Rightarrow Measurement of yield as a function of specific experimental variables
\Rightarrow This is equivalent to measuring the probability of occurrence of a physical process in a specific kinematic phase space
- Cross sections are measured in the unit of barns:
picobarn

$$
1 \text { barn } \equiv 10^{-24} \mathrm{~cm}^{2}
$$

Cross sectional area of a typical nucleus!

Cross Section of Rutherford Scattering

- The impact parameter in Rutherford scattering is

$$
b=\frac{Z Z^{\prime} e^{2}}{2 E} \cot \frac{\theta}{2}
$$

- Thus,

$$
\frac{d b}{d \theta}=-\frac{1}{2} \frac{Z Z^{\prime} e^{2}}{2 E} \operatorname{cosec}^{2} \frac{\theta}{2}
$$

- Differential cross section of Rutherford scattering is
$\frac{d \sigma}{d \Omega}(\theta)=-\frac{b}{\sin \theta} \frac{d b}{d \theta}=\left(\frac{Z Z^{\prime} e^{2}}{4 E}\right)^{2} \operatorname{cosec}^{4} \frac{\theta}{2}=\left(\frac{Z Z^{\prime} e^{2}}{4 E}\right)^{2} \frac{1}{\sin ^{4} \frac{\theta}{2}}$
what happened? can you say "trig identity?" $\sin (2 x)=2 \sin (x) \cos (x)$
plot/applets

Measuring Cross Sections

Number of detected particles/sec

- This is a general expression for any scattering process, independent of the theory
- This gives an observed counts per second

