PHYS 3446 - Lecture \#4

$$
\begin{gathered}
\text { Thursday, January 29, } 2015 \\
\text { (Dr. Brandt }
\end{gathered}
$$

1. Rutherford Scattering with Coulomb force
2. Scattering Cross Section
3. Differential Cross Section of Rutherford Scattering
4. Measurement of Cross Sections

Rutherford Scattering with EM Force 2

The distance vector \mathbf{r} is always in the same direction as the force so the net torque (rxF) is 0 and angular momentum is conserved $\mathrm{dL} / \mathrm{dt}=0$ ($\mathrm{L}=\mathrm{rxp}$) is conserved. \rightarrow The magnitude of angular momentum is $L=m v b$.

Rutherford Scattering with EM Force 2b

- Far from target $\mathrm{E}=\mathrm{KE} \mathrm{PE}=\mathrm{qV} \mathrm{V} \sim 0$

$$
E=\frac{1}{2} m v_{0}^{2}=\text { constant }>0 \quad \Rightarrow \mathrm{v}_{0}=\sqrt{\frac{2 E}{m}}
$$

$$
l=m \sqrt{2 E / m} \cdot b=b \sqrt{2 m E} \Rightarrow b^{2}=l^{2} / 2 m E
$$

- From angular momentum defn. , we obtain an equation of motion, where $\chi=$ angle between $-x$ axis and radial vector"

$$
\mathrm{L}=\operatorname{lw} \quad \mathrm{w}=\mathrm{d} \chi / \mathrm{dt} \quad d \chi / d t=l / m r^{2}
$$

- From energy conservation, we obtain another equation of motion $E=K E+E(r o t)+P E \quad P E$ aka $V(r)$

Rutherford Scattering with EM Force 3

$$
\frac{d r}{d t}= \pm \sqrt{\frac{2}{m}\left(E-V(r)-\frac{l^{2}}{2 m r^{2}}\right)}
$$

- sign since
r decreases as
alpha particle
approaches target

substitute 1.18 in the following
Eq. 1.18 $\mathrm{d} \chi / \mathrm{dt}=\mathrm{L} / \mathrm{mr}^{2}=\mathrm{d} \chi / \mathrm{dr}{ }^{*} \mathrm{dr} / \mathrm{dt}$ gives

$$
d \chi=-\frac{b d r}{r\left[r^{2}\left(1-\frac{V(r)}{E}\right)-b^{2}\right]^{1 / 2}}
$$

Eq. 1.19

Rutherford Scattering with EM Force 4

- What happens at the DCA?
- Radial velocity 0 when radial $\left.\frac{d r}{d t}\right|_{r=r_{0}}=0$
- Consider the case where the alpha particle is incident on the zaxis, it would reach the DCA, stop, and reverse direction!
- From Eq. 1.18, we can obtain

$$
r_{0}^{2}\left(1-\frac{V\left(r_{0}\right)}{E}\right)-b^{2}=0
$$

- This allows us to determine DCA for a given potential and χ_{0} (asymptotic scattering angle)
- Substituting 1.19 into the scattering angle equation gives:

$$
\theta=\pi-2 \chi_{0}=\pi-2 b \int_{r_{0}}^{\infty} \frac{d r}{r\left[r^{2}\left(1-\frac{V(r)}{E}\right)-b^{2}\right]^{1 / 2}}
$$

Rutherford Scattering with EM Force 5

- For a Coulomb potential

$$
V(r)=\frac{Z Z^{\prime} e^{2}}{r}
$$

- DCA can be obtained for a given impact parameter b,

$$
r_{0}=\frac{Z Z^{\prime} e^{2} / E}{2}\left(1+\sqrt{1+4 b^{2} E^{2} /\left(Z Z^{\prime} e^{2}\right)^{2}}\right)
$$

- And the angular distribution becomes

$$
\theta=\pi-2 b \int_{r_{0}}^{\infty} \frac{d r}{r\left[r^{2}\left(1-\frac{Z Z^{\prime} e^{2}}{r E}\right)-b^{2}\right]^{1 / 2}}
$$

Rutherford Scattering with EM Force 6

- Replace the variable $1 / r=x$, and performing the integration, we obtain

$$
\theta=\pi+2 b \cos ^{-1}\left(\frac{1}{\sqrt{1+4 b^{2} E^{2} /\left(Z Z^{\prime} e^{2}\right)^{2}}}\right)
$$

- This can be rewritten

$$
\frac{1}{\sqrt{1+4 b^{2} E^{2} /\left(Z Z^{\prime} e^{2}\right)^{2}}}=\cos \left(\frac{\theta-\pi}{2}\right)
$$

- Solving this for b, we obtain

$$
b=\frac{Z Z^{\prime} e^{2}}{2 E} \cot \frac{\theta}{2}
$$

Rutherford Scattering with EM Force 7

$$
b=\frac{Z Z^{\prime} e^{2}}{2 E} \cot \frac{\theta}{2}
$$

- From the solution for b, we can learn the following

1. For fixed b and E

- The scattering is larger for a larger value of Z or Z^{\prime} (large charge in projectile or target)
- Makes perfect sense since Coulomb potential is stronger with larger Z.
- Results in larger deflection.

2. For fixed b, Z and $Z '$

- The scattering angle is larger when E is smaller.
- If particle has low energy, its velocity is smaller
- Spends more time in the potential, suffering greater deflection

3. For fixed Z, Z^{\prime}, and E

- The scattering angle is larger for smaller impact parameter b
- Makes perfect sense also, since as the incident particle is closer to the nucleus, it feels stronger Coulomb force.

What do we learn from scattering?

- Scattering of a particle in a potential is completely determined when we know both
- The impact parameter, b, and
- The energy of the incident particle, E

$$
b=\frac{Z Z^{\prime} e^{2}}{2 E} \cot \frac{\theta}{2}
$$

- What do we need to perform a scattering experiment?
- Incident flux of beam particles with known E
- Device that can measure number of scattered particles at various angle, θ.
- Measurements of the number of scattered particles reflect
- Impact parameters of the incident particles
- The effective size of the scattering center
- By measuring the scattering angle θ, we can learn about the potential or the forces between the target and the projectile

Scattering Cross Section

- N_{0} : The number of particles incident on the target foil per unit area per unit time.
- Any incident particles entering with impact parameter b and $b+d b$ will scatter to the angle θ and θ-d θ.
- In other words, they scatter into the solid angle $\mathrm{d} \Omega(=2 \pi \sin \theta \mathrm{~d} \theta)$.
- So the number of particles scattered into the solid angle $\mathrm{d} \Omega$ per unit time is $2 \pi N_{0} b d b$.

Scattering Cross Section

- For a central potential the scattering center presents an effective transverse cross-sectional area of

$$
\Delta \sigma=2 \pi b d b
$$

for the particles to scatter into θ and $\theta+d \theta$

Scattering Cross Section

- In more generalized cases, $\Delta \sigma$ depends on both θ \& ϕ.

$$
\Delta \sigma(\theta, \phi)=b d b d \phi=\bigodot_{\text {Why negative? }}^{d \sigma}(\theta, \phi) d \Omega=-\frac{d \sigma}{d \Omega}(\theta, \phi) \sin \theta d \theta d \phi
$$

- With a spherical symmetry, ϕ can be integrated out:

$$
\Delta \sigma(\theta)=-\frac{d \sigma}{d \Omega}(\theta) 2 \pi \sin \theta d \theta=2 \pi b d b
$$

What is the dimension of the differential cross section?

Scattering Cross Section

- So what is the physical meaning of the differential cross section?
\Rightarrow Measurement of the probability of occurrence of a physical process given certain input variables
- Cross sections are measured in the unit of barns:

1 barn $\equiv 10^{-24} \mathrm{~cm}^{2} \quad$ nanobarn

Cross sectional area of a typical nucleus!
picobarn
femtobarn

Total Cross Section

- Total cross section is the integration of the differential cross section over the entire solid angle, Ω :
$\sigma_{\text {Total }}=\int_{0}^{4 \pi} \frac{d \sigma}{d \Omega}(\theta, \phi) d \Omega=2 \pi \int_{0}^{\pi} d \theta \sin \theta \frac{d \sigma}{d \Omega}(\theta)$
- Total cross section represents the effective size of the scattering center integrated over all possible impact parameters (and consequently all possible scattering angles)

Cross Section of Rutherford Scattering

- The impact parameter in Rutherford scattering is

$$
b=\frac{Z Z^{\prime} e^{2}}{2 E} \cot \frac{\theta}{2}
$$

- Thus,

$$
\frac{d b}{d \theta}=-\frac{1}{2} \frac{Z Z^{\prime} e^{2}}{2 E} \operatorname{cosec}^{2} \frac{\theta}{2}
$$

- Differential cross section of Rutherford scattering is
$\frac{d \sigma}{d \Omega}(\theta)=-\frac{b}{\sin \theta} \frac{d b}{d \theta}=\left(\frac{Z Z^{\prime} e^{2}}{4 E}\right)^{2} \operatorname{cosec}^{4} \frac{\theta}{2}=\left(\frac{Z Z^{\prime} e^{2}}{4 E}\right)^{2} \frac{1}{\sin ^{4} \frac{\theta}{2}}$
what happened? can you say "trig identity?" $\sin (2 x)=2 \sin (x) \cos (x)$
plot/applets

Measuring Cross Sections

Area of
Telescope

- Rutherford scattering experiment
- Used a collimated beam of α particles emitted from Radon
- A thin Au foil target
- A scintillating glass screen with ZnS phosphor deposit
- Telescope to view limited area of solid angle
- Telescope only needs to move along θ not ϕ. Why?
- Due to the spherical symmetry, scattering only depends on θ not ϕ.

Total X-Section of Rutherford Scattering

- To obtain the total cross section of Rutherford scattering, one integrates the differential cross section over all θ :

$$
\begin{aligned}
& \sigma_{\text {Total }}=2 \pi \int_{0}^{\pi} \frac{d \sigma}{d \Omega}(\theta) \sin \theta d \theta=8 \pi\left(\frac{Z Z^{\prime} e^{2}}{4 E}\right)^{2} \int_{0}^{1} d\left(\sin \frac{\theta}{2}\right) \frac{1}{\sin ^{3} \frac{\theta}{2}} \\
& \text { What is the result of this integration? }
\end{aligned}
$$

- Infinity!!
- Does this make sense?
- Yes
- Why?
- Since the Coulomb force's range is infinite (particle with very large impact parameter still contributes to integral through very small scattering angle)
- What would be the sensible thing to do?
- Integrate to a cut-off angle since after certain distance the force is too weak to impact the scattering. $\left(\theta=\theta_{0}>0\right)$; note this is sensible since alpha particles far away don't even see charge of nucleus due to screening effects.

Measuring Cross Sections

- With the flux of N_{0} per unit area per second
- Any a particles in range b to b+db will be scattered into θ to $\theta-\mathrm{d} \theta$
- The telescope aperture limits the measurable area to

$$
A_{\text {Tele }}=R d \theta \cdot R \sin \theta d \phi=R^{2} d \Omega
$$

- How could they have increased the rate of measurement?
- By constructing an annular telescope
- By how much would it increase? $2 \pi / \mathrm{d} \phi$

Measuring Cross Sections

- Fraction of incident particles $\left(\mathrm{N}_{0}\right)$ approaching the target in the small area $\Delta \sigma=b d \phi d b$ at impact parameter b is $\mathrm{dn} / \mathrm{N}_{0}$.
- so dn particles scatter into $R^{2} d \Omega$, the aperture of the telescope
- This fraction is the same as
- The sum of $\Delta \sigma$ over all N nuclear centers throughout the foil divided by the total area (S) of the foil.
- Or, in other words, the probability for incident particles to enter within the N areas divided by the probability of hitting the foil. This ratio can be expressed as

$$
-\frac{d n}{N_{0}}=\frac{N}{S} \Delta \sigma(\theta, \phi)=\frac{N b d \phi d \theta}{S}
$$

Measuring Cross Sections

- For a foil with thickness t, mass density ρ, atomic weight A :

$$
N=\frac{\rho t S}{A} A_{0} \quad \begin{gathered}
\mathrm{A}_{0} \text { : Avogadro's number } \\
\text { of atoms per mole }
\end{gathered}
$$

- Since from what we have learned previously

$$
-\frac{d n}{N_{0}}=\frac{N b d \phi d \theta}{S}
$$

- The number of α scattered into the detector angle (θ, ϕ) is

$$
d n=\frac{N_{0} \rho t A_{0} d \sigma(\theta, \phi)}{A R} d \Omega=N_{0} \frac{N}{S} \frac{d \sigma(\theta, \phi)}{d \Omega}
$$

Measuring Cross Sections

 scattering process, independent of the theory

- This gives an observed counts per second

Example Cross Section: Jet +X

- Inclusive jet production cross section as a function of transverse energy
triumph of QCD
what if there were an excess at high energy?

HW \#2 Due Thurs. Feb. 5

1. Plot the differential cross section of the Rutherford scattering as a function of the scattering angle θ for three sensible choices of the lower limit of the angle. (use $\mathrm{Z}_{\mathrm{Au}}=79, \mathrm{Z}_{\mathrm{he}}=2$, $\mathrm{E}=10 \mathrm{keV}$).
2. Compute the total cross section of the Rutherford scattering in unit of barns for your cut-off angles.
3. Find a plot of a cross section from a current HEP experiment, and write a few sentences about what is being measured.
4. Book problem 1.10
5. Book problem 1.11 OR 1.12
