PHYS 3446 – Lecture #4

Thursday, January 29, 2015 Dr. **Brandt**

- 1. Rutherford Scattering with Coulomb force
- 2. Scattering Cross Section
- 3. Differential Cross Section of Rutherford Scattering
- 4. Measurement of Cross Sections

The distance vector **r** is always in the same direction as the force so the net torque $(\mathbf{r} \times \mathbf{F})$ is 0 and angular momentum is conserved **dL/dt=0** (L=rxp) is conserved. \rightarrow The magnitude of angular momentum is **L=mvb**.

2E

• Far from target E=KE PE=qV V~0

$$E = \frac{1}{2}mv_0^2 = \text{constant} > 0 \qquad \Rightarrow v_0 = \sqrt{\frac{1}{2}}$$

$$l = m\sqrt{2E/m} \cdot b = b\sqrt{2mE} \Longrightarrow b^2 = l^2/2mE$$

- From angular momentum defn., we obtain an equation of motion, where χ = angle between -x axis and radial vector" L=lw w=d χ /dt $d\chi/dt = l/mr^2$
- From energy conservation, we obtain another equation of motion
 E=KE+E(rot)+PE PE aka V(r)

$$E = \frac{1}{2}m\left(\frac{dr}{dt}\right)^{2} \longrightarrow \frac{dr}{dt} = \pm \sqrt{\frac{2}{m}\left(E - V(r) - \frac{l^{2}}{2mr^{2}}\right)} \qquad \text{Centrifugal barrier} \\ + \frac{1}{2}mr^{2}\left(\frac{d\chi}{dt}\right)^{2} + V(r) \qquad \text{PHYS 3446 Andrew Brandt} \qquad \text{Eq. 1.17}$$

Rutherford Scattering with EM Force 3

$$\frac{dr}{dt} = \pm \sqrt{\frac{2}{m} \left(E - V(r) - \frac{l^2}{2mr^2} \right)} \qquad \text{(or not 2b)}$$

$$\Rightarrow b^2 = l^2/2mE$$
Fright since $\frac{dr}{dt} = -\frac{l}{mrb} \sqrt{r^2 \left(1 - \frac{V(r)}{E} \right) - b^2} \qquad \text{Eq. 1.18}$
Substitute 1.18 in the following $d\chi/dt = L/mr^2 = d\chi/dr^* dr/dt$ gives

$$d\chi = -\frac{bdr}{r\left[r^2\left(1 - \frac{V(r)}{E}\right) - b^2\right]^{1/2}} \quad \text{Eq. 1.19}$$

- What happens at the DCA?
 - Radial velocity 0 when radial $\left. \frac{dr}{dt} \right|_{r=r_0} = 0$
 - Consider the case where the alpha particle is incident on the zaxis, it would reach the DCA, stop, and reverse direction!
 - From Eq. 1.18, we can obtain

$$r_0^2 \left(1 - \frac{V(r_0)}{E} \right) - b^2 = 0$$

- This allows us to determine DCA for a given potential and χ_0 (asymptotic scattering angle)
- Substituting 1.19 into the scattering angle equation gives:

$$\theta = \pi - 2\chi_0 = \pi - 2b \int_{r_0}^{\infty} \frac{dr}{r \left[r^2 \left(1 - \frac{V(r)}{E} \right) - b^2 \right]^{1/2}}$$

1/29/2015

PHYS 3446 Andrew Brandt

• For a Coulomb potential

$$V(r) = \frac{ZZ'e^2}{r}$$

• DCA can be obtained for a given impact parameter b,

$$r_{0} = \frac{ZZ'e^{2}/E}{2} \left(1 + \sqrt{1 + 4b^{2}E^{2}/(ZZ'e^{2})^{2}} \right)$$

• And the angular distribution becomes

$$\theta = \pi - 2b \int_{r_0}^{\infty} \frac{dr}{r \left[r^2 \left(1 - \frac{ZZ'e^2}{rE} \right) - b^2 \right]^{1/2}}$$

Replace the variable 1/r=x, and performing the integration, we obtain

$$\theta = \pi + 2b \cos^{-1} \left(\frac{1}{\sqrt{1 + 4b^2 E^2 / (ZZ'e^2)^2}} \right)^2$$

• This can be rewritten

$$\frac{1}{\sqrt{1+4b^2E^2/(ZZ'e^2)^2}} = \cos\left(\frac{\theta-\pi}{2}\right)$$

• Solving this for b, we obtain

$$b = \frac{ZZ'e^2}{2E}\cot\frac{\theta}{2}$$

$$b = \frac{ZZ'e^2}{2E}\cot\frac{\theta}{2}$$

- From the solution for b, we can learn the following
 - 1. For fixed b and E
 - The scattering is larger for a larger value of Z or Z' (large charge in projectile or target)
 - Makes perfect sense since Coulomb potential is stronger with larger Z.
 - Results in larger deflection.
 - 2. For fixed b, Z and Z'
 - The scattering angle is larger when E is smaller.
 - If particle has low energy, its velocity is smaller
 - Spends more time in the potential, suffering greater deflection
 - 3. For fixed Z, Z', and E
 - The scattering angle is larger for smaller impact parameter b
 - Makes perfect sense also, since as the incident particle is closer to the nucleus, it feels stronger Coulomb force.

What do we learn from scattering?

- Scattering of a particle in a potential is completely $b = \frac{ZZ'e^2}{2E}\cot\frac{\theta}{2}$ determined when we know both
 - The impact parameter, b, and
 - The energy of the incident particle, E
- What do we need to perform a scattering experiment?
 - Incident flux of beam particles with known E
 - Device that can measure number of scattered particles at various angle, θ .
 - Measurements of the number of scattered particles reflect
 - Impact parameters of the incident particles
 - The effective size of the scattering center
- By measuring the scattering angle θ , we can learn about the potential or the forces between the target and the projectile

Scattering Cross Section

- N₀: The number of particles incident on the target foil per unit area per unit time.
- Any incident particles entering with impact parameter b and b+db will scatter to the angle θ and θ -d θ .
- In other words, they scatter into the solid angle $d\Omega$ (= $2\pi sin\theta d\theta$).
- So the number of particles scattered into the solid angle $d\Omega$ per unit time is $2\pi N_0$ bdb.

Scattering Cross Section

 For a central potential the scattering center presents an effective transverse cross-sectional area of

$\Delta \sigma = 2\pi b db$

for the particles to scatter into θ and θ +d\theta

Scattering Cross Section

• In more generalized cases, $\Delta \sigma$ depends on both $\theta \& \phi$.

$$\Delta \sigma(\theta, \phi) = b d b d \phi = \bigoplus_{d\Omega}^{d\sigma} (\theta, \phi) d\Omega = -\frac{d\sigma}{d\Omega} (\theta, \phi) \sin \theta d\theta d\phi$$

Why negative? Since the deflection and change of b are in opposite direction!!

• With a spherical symmetry, ϕ can be integrated out: $\Delta \sigma(\theta) = -\frac{d\sigma}{d\Omega}(\theta) 2\pi \sin \theta d\theta = 2\pi b db$ What is the dimension of the differential cross Section
What is the dimension of the differential cross section?
Area!!

femptobar

Scattering Cross Section

- So what is the physical meaning of the differential cross section?
- ⇒ Measurement of the probability of occurrence of a physical process given certain input variables
- Cross sections are measured in the unit of barns:

$$1 \text{ barn } \equiv 10^{-24} \text{ cm}^2$$

Cross sectional area of a typical nucleus!

nanobarn picobarn

femtobarn

Total Cross Section

• Total cross section is the integration of the differential cross section over the entire solid angle, Ω :

$$\sigma_{Total} = \int_0^{4\pi} \frac{d\sigma}{d\Omega} (\theta, \phi) d\Omega = 2\pi \int_0^{\pi} d\theta \sin \theta \frac{d\sigma}{d\Omega} (\theta)$$

 Total cross section represents the effective size of the scattering center integrated over all possible impact parameters (and consequently all possible scattering angles)

Cross Section of Rutherford Scattering

The impact parameter in Rutherford scattering is

$$b = \frac{ZZ'e^2}{2E}\cot\frac{\theta}{2}$$

• Thus,

Differential cross section of Rutherford scattering is

$$\frac{d\sigma}{d\Omega}(\theta) = -\frac{b}{\sin\theta} \frac{db}{d\theta} = \left(\frac{ZZ'e^2}{4E}\right)^2 \operatorname{cosec}^4 \frac{\theta}{2} = \left(\frac{ZZ'e^2}{4E}\right)^2 \frac{1}{\sin^4 \frac{\theta}{2}}$$
what happened? can you say "trig identity?" $\sin(2x)=2\sin(x)\cos(x)$
^{1/29/2015}
PHYS 3446 Andrew Brandt plot/applets ¹⁵

- Rutherford scattering experiment
 - Used a collimated beam of α particles emitted from Radon
 - A thin Au foil target
 - A scintillating glass screen with ZnS phosphor deposit
 - Telescope to view limited area of solid angle
 - Telescope only needs to move along θ not $\varphi.$ Why?
 - Due to the spherical symmetry, scattering only depends on θ not $\varphi.$

Total X-Section of Rutherford Scattering

• To obtain the total cross section of Rutherford scattering, one integrates the differential cross section over all θ :

$$\sigma_{Total} = 2\pi \int_0^{\pi} \frac{d\sigma}{d\Omega}(\theta) \sin\theta d\theta = 8\pi \left(\frac{ZZ'e^2}{4E}\right)^2 \int_0^1 d\left(\sin\frac{\theta}{2}\right) \frac{1}{\sin^3\frac{\theta}{2}}$$

- What is the result of this integration?
 - Infinity!!
- Does this make sense?
 - Yes
- Why?
 - Since the Coulomb force's range is infinite (particle with very large impact parameter still contributes to integral through very small scattering angle)
- What would be the sensible thing to do?
 - Integrate to a cut-off angle since after certain distance the force is too weak to impact the scattering. ($\theta = \theta_0 > 0$); note this is sensible since alpha particles far away don't even see charge of nucleus due to screening effects.

- With the flux of N₀ per unit area per second
- Any α particles in range b to b+db will be scattered into θ to θ -d θ
- The telescope aperture limits the measurable area to $A_{Tele} = Rd\theta \cdot R\sin\theta d\phi = R^2 d\Omega$
- How could they have increased the rate of measurement?
 - By constructing an annular telescope
 - By how much would it increase?

- Fraction of incident particles (N₀) approaching the target in the small area $\Delta\sigma$ =bd ϕ db at impact parameter b is dn/N₀.
 - so dn particles scatter into $R^2 d\Omega$, the aperture of the telescope
- This fraction is the same as
 - The sum of $\Delta\sigma$ over all N nuclear centers throughout the foil divided by the total area (S) of the foil.
 - Or, in other words, the probability for incident particles to enter within the N areas divided by the probability of hitting the foil. This ratio can be expressed as

$$-\frac{dn}{N_0} = \frac{N}{S} \Delta \sigma(\theta, \phi) = \frac{Nbd\phi d\theta}{S} \quad \text{Eq. 1.3}$$

• For a foil with thickness t, mass density ρ , atomic weight A:

 $N = \frac{\rho t S}{A} A_0$ $A_0: \text{ Avogadro's number} \text{ of atoms per mole}$

• Since from what we have learned previously

$$\frac{dn}{dt} = \frac{Nbd\phi d\theta}{d\theta}$$

• The number of α scattered into the detector angle (θ,ϕ) is

$$dn = \frac{N_0 \rho t A_0 d\sigma(\theta, \phi)}{A d\Omega} d\Omega = N_0 \frac{N}{S} \frac{d\sigma(\theta, \phi)}{d\Omega} d\Omega$$
For 1.40

- This is a general expression for any scattering process, independent of the theory
- This gives an observed counts per second

Example Cross Section: Jet +X

energy?

I III O JHHU AIIUIGW DIAIIUL

HW #2 Due Thurs. Feb. 5

1. Plot the differential cross section of the Rutherford scattering as a function of the scattering angle θ for three sensible choices of the lower limit of the angle.

(use Z_{Au} =79, Z_{he} =2, E=10keV).

- 2. Compute the total cross section of the Rutherford scattering in unit of barns for your cut-off angles.
- 3. Find a plot of a cross section from a current HEP experiment, and write a few sentences about what is being measured.
- 4. Book problem 1.10
- 5. Book problem 1.11 <u>OR</u> 1.12