PHYS 3446 - Lecture \#5

Thurs., Feb. 52015
 Brandt

1. Center of mass
2. Lab and CM frames
3. Scattering angles

Lab Frame and Center of Mass Frame

- So far, we have neglected the motion of target nuclei in Rutherford Scattering
- In reality, they recoil as a result of scattering
- This complication can best be handled using the Center of Mass frame under a central potential
- This description is also useful for scattering experiments with two beams of particles (moving target)

Lab Frame and CM Frame

$$
\begin{aligned}
& \vec{r}_{1}=r_{1} \hat{r}_{1} \\
& \vec{r}_{2}=r_{2} \hat{r}_{2} \\
& \vec{r}=r \hat{r} \\
& \vec{R}_{C M}=R_{C M} \hat{R}_{C M}
\end{aligned}
$$

- The equations of motion can be written

$$
m_{1} \ddot{r}_{1}=-\vec{\nabla}_{1} V\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)
$$

$$
m_{2} \ddot{\vec{r}}_{2}=-\vec{\nabla}_{2} V\left(\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)
$$

where $\quad \vec{\nabla}_{i}=\hat{r}_{i} \frac{\partial}{\partial r_{i}}+\frac{\hat{\theta}_{i}}{r_{i}} \frac{\partial}{\partial \theta_{i}}+\frac{\hat{\phi}_{i}}{r_{i} \sin \theta_{i}} \frac{\partial}{\partial \phi_{i}} \quad i=1,2$
Since the potential depends only on relative separation of the particles, we redefine new variables, relative coordinates \& coordinate of CM

$$
\vec{r}=\vec{r}_{1}-\vec{r}_{2} \quad \text { and } \quad \vec{R}_{C M}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}}
$$

Now some simple arithmetic

- From the equations of motion, we obtain

$$
m_{1} \ddot{\overrightarrow{r_{1}}}-m_{2} \ddot{\vec{r}}_{2}=m_{1} \ddot{\overrightarrow{r_{1}}}-m_{2}\left(\ddot{\overrightarrow{r_{1}}}-\ddot{\vec{r}}\right)=\left(m_{1}-m_{2}\right) \ddot{\overrightarrow{r_{1}}}+m_{2} \ddot{\vec{r}}
$$

$$
=-\left(\hat{r}_{1} \frac{\partial}{\partial r_{1}}-\hat{r}_{2} \frac{\partial}{\partial r_{2}}\right) V(|\vec{r}|)=-2 \hat{r} \frac{\partial}{\partial r} V(|\vec{r}|)
$$

- Since the momentum of the system is conserved:

$$
\frac{m_{1} \ddot{\vec{r}}_{1}+m_{2} \ddot{\vec{r}}_{2}}{m_{1}+m_{2}}=\ddot{\vec{R}}_{C M}=0 \Rightarrow m_{1} \ddot{\vec{r}}_{1}=-m_{2} \ddot{\vec{r}}_{2}=-m_{2}\left(\ddot{\vec{r}}_{1}-\ddot{\vec{r}}\right)
$$

- Rearranging the terms, we obtain

$$
\begin{aligned}
& \left(m_{1}+m_{2}\right) \ddot{r}_{1}=m_{2} \ddot{\vec{r}} \Rightarrow \ddot{\vec{r}}_{1}=\frac{m_{2}}{\left(m_{1}+m_{2}\right)} \ddot{\vec{r}}
\end{aligned}
$$

Lab Frame and CM Frame

- From the equations in previous slides

Lab Frame and CM Frame

$$
\begin{aligned}
& \vec{r}_{1}=r_{1} \hat{r}_{1} \\
& \vec{r}_{2}=r_{2} \hat{r}_{2} \\
& \vec{r}=r \hat{r} \\
& \vec{R}_{c M}=R_{\mathrm{cm}} \hat{R}_{\mathrm{cm}} \\
& \vec{\nabla}_{i}=\hat{r}_{i} \frac{\partial}{\partial r_{i}}+\frac{\hat{\theta}_{i}}{r_{i}} \frac{\partial}{\partial \theta_{i}}+\frac{\hat{\phi}_{i}}{r_{i} \sin \theta_{i}} \frac{\partial}{\partial \phi_{i}} \\
& i=1,2
\end{aligned}
$$

Since the potential depends only on relative separation of

Origin of
Coordinates
the particles, we define new variables:

$$
\vec{r}=\vec{r}_{1}-\vec{r}_{2}
$$

relative coordinates

Lab Frame and CM Frame

- The CM is moving at a constant velocity in the lab frame independent of the form of the central potential
- How do we know this? Momentum is conserved so $d p / d t=0$ so $p=m v$ is constant and $->v$ is constant
- The motion is that of a fictitious particle with mass μ (the reduced mass) and coordinate r .
- Frequently we define the Center of Mass frame as the frame where the sum of the momenta of all the interacting particles is 0 .

Relationship of variables in Lab and CM

\hat{A}

Lab Frame

CM Frame

 (Since $\mathrm{v}_{2}=0 \mathrm{~m}_{2} \mathrm{v}_{2}=0$)

- Speeds of the particles in CM frame are
$\tilde{v}_{1}=v_{1}-v_{C M}=\frac{m_{2} v_{1}}{m_{1}+m_{2} \times}$ and $\tilde{v}_{2}=v_{C M}=\frac{m_{1} v_{1}}{m_{1}+m_{2}}$
- The momenta of the two particles are equal and opposite!!

Differential cross sections in Lab and CM

- The particles that scatter in lab at an angle $\theta_{\text {Lab }}$ into solid angle $\mathrm{d} \Omega_{\text {Lab }}$ scatter at θ_{CM} into solid angle $\mathrm{d} \Omega_{\mathrm{CM}}$ in CM .
- Since ϕ is invariant, $d \phi_{\text {Lab }}=d \phi_{\mathrm{CM}}$.
- Why?
- ϕ is perpendicular to the direction of boost, thus is invariant.
- Thus, the differential cross section becomes:

Scattering angles in Lab and CM

- $\quad \theta_{\mathrm{CM}}$ represents the change in the direction of the relative position vector r as a result of the collision in CM frame
- Thus, it must be identical to the scattering angle for a particle with reduced mass, μ.

- Z components of the velocities of scattered particle with m_{1} in lab and CM are:

$$
v \cos \theta_{L a b}-v_{C M}=\tilde{v}_{1} \cos \theta_{C M}
$$

- The perpendicular components of the velocities are:
$v \sin \theta_{\text {Lab }}=\tilde{v}_{1} \sin \theta_{C M}$ (boost is only in the z direction)
- Thus, the angles are related (for elastic scattering only) as:
$\tan \theta_{L a b}=\frac{\sin \theta_{C M}}{\cos \theta_{C M}+v_{C M} / \tilde{v}_{1}}=\frac{\sin \theta_{C M}}{\cos \theta_{C M}+m_{1} / m_{2}}=\frac{\sin \theta_{C M}}{\cos \theta_{C M}+\zeta}$
with

$$
\begin{aligned}
& v_{C M}=\frac{m_{1} v_{1}}{m_{1}+m_{2}} \quad \tilde{v}_{1}=\frac{m_{2} v_{1}}{m_{1}+m_{2}} \quad \begin{array}{c}
\text { (Later we use a version of this } \\
\text { PHYS } 3446 \text { Andrew Brandt }
\end{array} \\
& \text { Feb 12, 2015 }
\end{aligned}
$$

