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History of Atomic Models cnt’d

Lec.2
• atomic models
• elastic scattering
• Rutherford scattering
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Elastic Scattering

• From momentum conservation

• From kinetic energy conservation (Elastic only!)

• From these,  we obtain
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Lec.3
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Rutherford Scattering

• From the solution for b, we can learn the following 
1. For fixed b, E and Z’

– The scattering is larger for a larger value of Z.
– Since Coulomb potential is stronger with larger Z.

2. For fixed b, Z and Z’
– The scattering angle is larger when E is smaller.

– Since the speed of the low energy particle is smaller
– The particle spends more time in the potential, suffering greater 

deflection
3. For fixed Z, Z’, and E

– The scattering angle is larger for smaller impact parameter b
– Since the closer the incident particle is to the nucleus, the stronger 

Coulomb force it feels

2' cot
2 2

ZZ eb
E

θ
=



Thursday, Mar. 26, 2015 PHYS 3446, Andrew Brandt 5

Total Cross Section
• Total cross section is the integration of the 

differential cross section over the entire solid 
angle, Ω: 

• Total cross section represents the effective size of 
the scattering center integrated over all possible 
impact parameters (and consequently all possible 
scattering angles)
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lec. 4 diff +total xsec

-24 21 barn = 10 cm
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Total X-Section of Rutherford Scattering
• To obtain the total cross section of Rutherford scattering, one 

integrates the differential cross section over all θ:

• What is the result of this integration?
– Infinity!!

• Does this make sense?
– Yes

• Why?
– Since the Coulomb force’s range is infinite (particle with very large impact 

parameter still contributes to integral through very small scattering angle)
• What would be the sensible thing to do?

– Integrate to a cut-off angle since after certain distance the force is too weak to 
impact the scattering. (θ=θ0>0); note this is sensible since alpha particles far 
away don’t even see charge of nucleus due to screening effects.
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Lab Frame and CM Frame
• The CM is moving at a constant velocity in the lab 

frame independent of the form of the central potential
• The motion is that of a fictitious particle with mass µ

(the reduced mass) and coordinate r.
• In the frame where the CM is stationary, the dynamics 

becomes equivalent to that of a single particle of mass 
µ scattering off of a fixed scattering center.

• Frequently we define the Center of Mass frame as the 
frame where the sum of the momenta of all the 
interacting particles is 0.

lec 4
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Relationship of variables in Lab and CM

• The speed of CM is

• Speeds of the particles in CM frame are

• The momenta of the two particles are equal and opposite!!
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Quantities in Special Relativity
• Fractional velocity 

• Lorentz γ factor

• Relative momentum and the total energy of the 
particle moving at a velocity                   is

• Square of four momentum P=(E,pc), rest mass E

P =


E =

v cβ =




v cβ=




2

1
1

γ
β

=
−

Mvγ =


M cγ β


2       T +
Re

2
st

E = 2 2 2 4P c M c+ = 2Mcγ

2 2 2 2 2P Mc E p c= = −

lec 5
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Relativistic Variables
• The invariant scalar, s, is defined as:

• So what is this in the CM frame?

• Thus,         represents the total available energy in 
the CM;  At the  LHC, eventually 
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• The mass deficit

is always negative and is proportional to the nuclear binding 
energy 

• What is the physical meaning of BE?
– A minimum energy required to release all nucleons from a nucleus

Nuclear Properties: Binding Energy

( ),M A Z∆ =

( ) 2. ,B E M A Z c= ∆

( ),M A Z ( )p nZm A Z m− − −

• Rapidly increase with A till A~60 
at which point BE~9 MeV.

• A>60, the B.E gradually 
decrease  For most of the 
large A nucleus, BE~8 MeV.

lec. 7
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• The size of a nucleus can be inferred from the 
diffraction pattern

• All this phenomenological investigation resulted in a 
startlingly simple formula for the radius of the nucleus 
in terms of the number of nucleons or atomic number, 
A: 

Nuclear Properties: Sizes

1 3
0R r A= ≈ 13 1 31.2 10 A cm−× = 1 31.2 fmA
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• For electrons, µe~µB, where µB is Bohr Magneton

• For nucleons, magnetic dipole moment is measured 
in nuclear magneton, defined using proton mass

• Measured magnetic moments of proton and neutron:

Nuclear Properties: Magnetic Dipole Moments

Bµ =

2N
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e
m c

µ =

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2 e

e
m c

=
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• The number of protons and 
neutrons inside stable nuclei are
– A<40: Equal (N=Z)
– A>40: N~1.7Z
– Neutrons outnumber protons
– Most are even-p + even–n

• See table 2.1
– Supports strong pairing 

Nuclear Properties: Stability
N~1.7Z

N=Z

N Z Nnucl

Even Even 156
Even Odd 48
Odd Even 50
Odd Odd 5

Lec.8
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• A square well nuclear potential  provides the basis of 
quantum theory with discrete energy levels and 
corresponding bound state just like in atoms
– Presence of nuclear quantum states have been confirmed through 

• Scattering experiments
• Studies of the energies emitted in nuclear radiation

• Studies of mirror nuclei and the scatterings of protons and 
neutrons demonstrate
– Aside from the Coulomb effects, the forces between two neutrons, 

two protons or a proton and a neutron are the same 
• Nuclear force has nothing to do with electrical charge
• Protons and neutrons behave the same under the nuclear force

– Inferred as charge independence of nuclear force.

Nuclear Potentiallec 9



Thursday, Mar. 26, 2015 PHYS 3446, Andrew Brandt 18

• Represents the disintegration of a parent nucleus to a 
daughter through emission of a He nucleus

• Reaction equation is

Nuclear Radiation: Alpha Decay

A ZX →
2

PM c =

DT Tα+ =

4 2A ZY− − + 4 2He
2

D DM c T+ + 2M c Tα α+

( ) 2
P DM M M cα− − = 2Mc∆

How does this compare to binding energy? 
Q=

( ),M A Z∆ = ( ),M A Z ( )p nZm A Z m− − − 0<

0>
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• Less energetic ones accompanied by  
delayed photons
– Indicates quantum energy levels
– Parent decays to an excited state of the 

daughter after emitting an α

– Daughter then subsequently de-excite by 
emitting a photon

– Difference in the two Q values correspond 
to photon energy  

• Most energetic α-particles produced alone
– Parent nucleus decays to the ground state of a daughter 

and produces an α-particle whose KE is 

Nuclear Radiation: Alpha Decay

A ZX →

4 * 2A ZY− − →

4 * 2A ZY− − + 4 2He

4 2A ZY− − + γ

4AT Q
Aα
−

≈

lec 10-11
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• 240Pu94 decay reaction is

• α particles observed with 5.17MeV and 5.12 MeV
• Since
• We obtain the two Q-values

• Which yields a photon energy of
• Consistent with experimental measurement, 45KeV
• Indicates the energy level spacing of order 100KeV for 

nuclei
– Compares to order 1eV spacing in atomic levels  

Nuclear Radiation: α-Decay Example
240 94Pu →

1
240 5.17 5.26
236

Q MeV MeV≈ =

4
AQ T

A α=
−

2
240 5.12 5.21
236

Q MeV MeV≈ =

1 2 0.05E Q Q Q MeVγ = ∆ = − =

236 92U + 4 2He
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• Electron emission

• Positron emission

• Electron capture

β–Decay Reaction Equations with Neutrinos

A ZX →

A ZX →

A ZX e−+ →

eν

eν

eν

1A ZY e+ −+ +

1A ZY e− ++ +

1A ZY − +

lec. 12
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• Baryon numbers: A quantum number assigned to 
baryons (protons, neutrons…) 
– Baryons +1
– Anti-baryons: -1
– Protons and neutrons are baryons with baryon number +1 

each
• Experimentally observed that baryon number is 

conserved. 
• Hadrons are strongly interacting particles (all baryons 

are hadrons, but not vice-versa)
• Baryons consist of three quarks
• Mesons consist of a quark and an anti-quark

Particle Numbers

weak
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1A Z A ZX Yµν τ+ −+ → +

1A Z A ZX Y eµν
+ −+ → +

• Three charged leptons exist in nature with their own 
associated neutrinos

• These three types of neutrinos are distinct from each 
other
– muon neutrinos never produce leptons other than muons or 

anti-muons

Lepton Number

e

e
ν
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