PHYS 1443 – Section 003 Lecture #1

Wednesday, Sept. 4, 2002 Dr. Jaehoon Yu

- 1. What is Physics?
- 2. What do we want from this class?
- 3. Summary of Chap. 1
- 4. Significant Figures and Uncertainties
- 5. One dimensional motion
 - Fundamentals
 - Displacement, Velocity, and Speed
 - Acceleration
 - Kinetic Equation of Motion

Today's homework is homework #2, due 1am, next Wednesday!!

Who am I?

- Name: Dr. Jaehoon Yu (You can call me Dr. Yu)
- Office: Rm 242A, Science Hall
- Extension: x2814, E-mail: jaehoonyu@uta.edu
- My profession: High Energy Physics
 - Collide particles (protons on anti-protons or electrons on anti-electrons, positrons) at the energies equivalent to 10,000 Trillion degrees
 - To understand
 - Fundamental constituents of matter
 - Interactions or forces between the constituents
 - Creation of Universe (**Big Bang** Theory)
 - A pure scientific research activity
 - Direct use of the fundamental laws we find may take longer than we want but
 - Indirect product of research contribute to every day lives; eg. WWW



Information & Communication Source

- My web page: <u>http://www-hep.uta.edu/~yu/</u>
 - Contact information & Class Schedule
 - Syllabus
 - Holidays and Exam days
 - Evaluation Policy
 - Class Style & homework: 34 of you have registered, will lock the enrollment one week from today
 - Other information
- Primary communication tool is e-mail: Register for <u>PHYS1443-003-FALL02 e-mail distribution list</u> as soon possible: Only 9 of you have registered to the list
- Class roster: 45 of you have been officially registered to this course but I have a total of 52. Please register ASAP.

Why do Physics?

- Exp. **•** To understand nature through experimental observations and measurements (**Research**)
- Establish limited number of fundamental laws, usually with mathematical expressions
 Predict the nature's course

 - ? Theory and Experiment work hand-in-hand
 - ? Theory works generally under restricted conditions
 - ? Discrepancies between experimental measurements and theory are good for improvements
 - ? Improves our everyday lives, though some laws can take a while till we see amongst us

What do we want from this class?

- Physics is everywhere around you.
- Understand the fundamental principles that surrounds you in everyday lives...
- Identify what law of physics applies to what phenomena...
- Understand the impact of such physical laws
- Learn how to research and analyze what you observe.
- Learn how to express observations and measurements in mathematical language.
- Learn how to express your research in systematic manner in writing
- I don't want you to be scared of PHYSICS!!!
- It really is nothing but a description of nature in mathematical language for ease of use

Brief History of Physics

- AD 18th century:
 - Newton's Classical Mechanics: A theory of mechanics based on observations and measurements
- AD 19th Century:
 - Electricity, Magnetism, and Thermodynamics
- Late AD 19th and early 20th century (Modern Physics Era)
 - Einstein's theory of relativity: Generalized theory of space, time, and energy (mechanics)
 - Quantum Mechanics: Theory of atomic phenomena
- Physics has come very far, very fast, and is still progressing, yet we've got a long way to go
 - What is matter made of?
 - How do matters get mass?
 - How and why do matters interact with each other?
 - How is universe created?

Needs for Standards and Units

- Basic quantities for physical measurements
 - Length, Mass, and Time
- Need a language that everyone can understand each other
 - Consistency is crucial for physical measurements
 - The same quantity measured by one must be comprehendible and reproducible by others
 - Practical matters contribute
- A system of unit called <u>SI</u> (*International System of units in French*) established in 1960
 - Length in meters (*m*)
 - Mass in kilo-grams (kg)
 - Time in seconds (s)

Definition of Base Units

SI Units	Definitions
1 <i>m (Length) =</i> 100 cm	The meter is the length of the path traveled by light in vacuum during a time interval of <u>1/299,792,458 of a second</u> .
1 kg (Mass) = 1000 g	It is equal to the mass of the international prototype of the kilogram, made of platinum-iridium in International Bureau of Weights and Measure in France.
1 <i>s (Time)</i>	The second is the <u>duration of 9,192,631,770 periods</u> of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 (C ¹³³) atom.

There are prefixes that scales the units larger or smaller for convenience (see pg. 7)
Units for other quantities, such as Kelvins for temperature, for easiness of use

Building Blocks of Matters, Density, and Avogadro's Number

- Matter can be sliced to its fundamental constituents •
 - Matter → Molecule → Atom → Nucleus → Protons and Neutrons → Ouarks
 - Atomic number (ID) of a substance = Number of Protons
 - Substances with the same Atomic number but different mass exist in nature and are called **lsotopes**
 - Atomic mass of a substance = average $N_p + N_n$ of all isotopes
- Atomic mass of a substance ρ is a property of matter is density of matter (ρ): Amount of mass $r \equiv \frac{M(kg)}{V(m^3)}$ • contained within unit volume (e.g.: $\rho_{AI}=2.7 g/cm^3$)
- One *mole (mol)* of a substance Definition of a standard for • consistency
 - The amount of the substance that contains as many particles (atoms, molecules, etc) as there are in 12g of C¹² Isotope
 - This number, based on experiment, is:
 - Avogadro's number: 6.02x10²³ particles/mol

Example 1.1

- A cube of A/ whose volume V=0.2 cm³
 - Density: $\rho = 2.7 \ g/cm^3$
- What is the number of AI atoms contained in the cube?
 - 1. What is the mass of the cube?

$$m = \mathbf{r}V = 2.7(g/cm^3) \times 0.2(cm^3) = 0.54(g)$$

2. What is the mass of 1 mol of Al?

$$m_{Al} = 27(g / mol) = 27g / 6.02 \times 10^{23} (atoms)$$

3. So using proportion:

→ $27g: 6.02x10^{23}(atoms) = 0.54g: N(atoms)$

$$N = \frac{m}{m_{Al}} = \frac{0.54g}{27(g/mol)} = 0.02mol$$
$$= 0.02 \times 6.02 \times 10^{23} (atoms) = 1.2 \times 10^{22} (atoms)$$

Dimension and Dimensional Analysis

- An extremely useful concept in solving physical problems
- Good to write physical laws in mathematical expressions
- No matter what units are used the base quantities are the same
 - Length (distance) is length whether meter or inch is used to express the size: Usually denoted as [L]
 - The same is true for *Mass ([M])* and *Time ([T])*
 - One can say "Dimension of Length, Mass or Time"
 - Dimensions are used as algebraic quantities: Can perform algebraic operations, addition, subtraction, multiplication or division
- One can use dimensions only to check the validity of one's expression: Dimensional analysis
 - Eg: Speed $[v] = [L]/[T] = [L][T^{-1}]$
 - Distance (L) traveled by a car running at the speed V in time T
 - $L = V^*T = [L/T]^*[T] = [L]$
- More general expression of dimensional analysis is using exponents: eg. [v]=[LⁿT^m] =[L]{T⁻¹] where n = 1 and m = -1

Examples 1.2 & 1.3

- 1.2: Show that the expression [v] = [at] is dimensionally correct
 - Based on table 1.6
 - Speed: *[v]* =L/T
 - Acceleration: [a] =L/T²
 - Thus, [at] = (L/T²)xT=LT⁽⁻²⁺¹⁾ =LT⁻¹ =L/T= [V]
- 1.3: Suppose *a* of a circularly moving particle with speed *v* and radius *r* is proportional to *rⁿ* and *v^m*. What are *n* and *m*?

$$a = kr^{n}v^{m}$$

$$L^{1}T^{-2} = (L)^{n}\left(\frac{L}{T}\right)^{m} = L^{n+m}T^{-m}$$

$$-m = -2$$

$$m = 2$$

$$n+m = n+2 = 1$$

$$n = -1$$

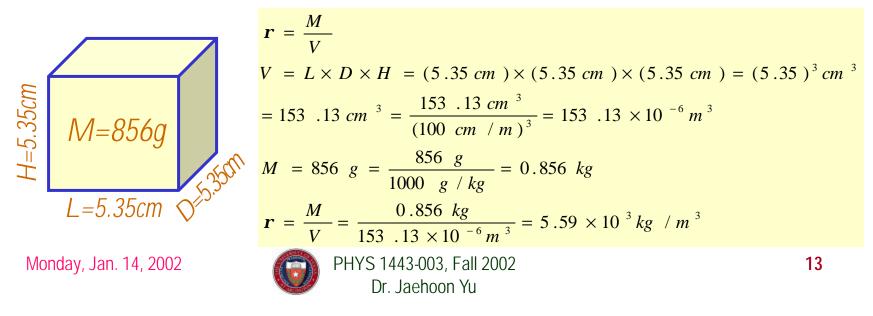
$$a = kr^{-1}v^{2} = \frac{v^{2}}{r}$$
Monday, Jan. 14, 2002
$$PHYS 1443-003, Fall 2002$$

$$Dr. Jaehoon Yu$$

$$12$$

Unit Conversion: Example 1.4

- US and UK still use British Engineering units: foot, lbs, and seconds
 - 1.0 in= 2.54 cm, 1ft=0.3048m=30.48cm
 - 1m=39.37in=3.281ft~1yd, 1mi=1609m=1.609km
 - 1lb=0.4535kg=453.5g, 1oz=28.35g=0.02835kg
 - Online unit converter: http://www.digitaldutch.com/unitconverter/
- Example 1.4: Determine density in basic SI units (*m*,*kg*)



Estimates & Order-of-Magnitude Calculations

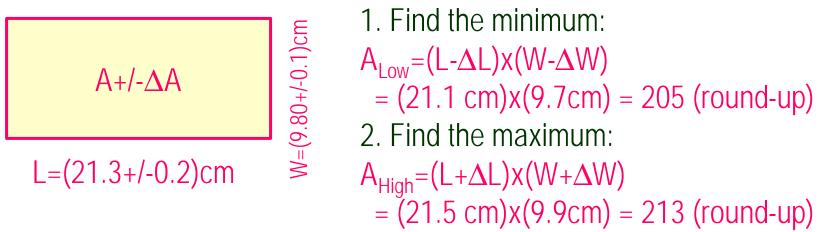
- Estimate = Approximation
 - Useful for rough calculations to determine the necessity of higher precision
 - Usually done under certain assumptions
 - Might require modification of assumptions, if higher precision is necessary
- Order of magnitude estimate: Estimates done to the precision of 10s or exponents of 10s;
 - Three orders of magnitude: 10³=1,000
 - Round up for Order of magnitude estimate; $8x10^7 \sim 10^8$
 - Similar terms: "Ball-park-figures", "guesstimates", etc

Uncertainties and Significant Figures

- Physical measurements have limited precision, however good it is, due to: •
 - Quality of instruments (meter stick vs micro-meter)
- Syst. Experience of the person doing measurements
- Number of measurements Stat.{
 - Etc
 - In many cases, uncertainties are more important and difficult to estimate than the central (or mean) values
 - Significant figures denote this precision of the measured values •
 - Significant figures: non-zero numbers or zeros that are not place-holders
 - 34 has two significant digits, 34.2 has 3, 0.001 has one because the 0's before 1 are place • holders, 34.100 has 5, because the 0's after 1 indicates that the numbers in these digits are indeed 0's.
 - Operational rules:
 - Addition or subtraction: Keep the smallest number of **decimal place** in the result, • independent of the number of significant digits: 34.001+120.1=154.1
 - Multiplication or Division: Keep the smallest significant figures in the result: 34.001x120.1 = 4083, because the smallest significant figures is 4.

Example 1.8

• Area of a rectangle and the uncertainty:



3. Take the average between minimum and maximum:

 $<A>=(A_{low+}A_{high})/2=209(cm^2)$ 4. Take the difference between either min or max to <A> is the uncertainty $\Delta A: \Delta A=+/-4cm^2$

5. Thus the result is: $A = \langle A \rangle + /- \Delta A = (209 + /-4) \text{ cm}^2$

Problems 1.4 and 1.13

 The mass of a material with density, ρ, required to make a hollow spherical shell with inner radius, r₁, and outer radius, r₂?

$$V_{sphere} = \frac{4p}{3}r^{3} \qquad M_{sphere} = rV_{sphere} = \frac{4p}{3}rr^{3}$$

$$M_{inner} = rV_{inner} = \frac{4p}{3}rr^{3}$$

$$M_{inner} = rV_{outer} = \frac{4p}{3}rr^{3}$$

$$M_{outer} = rV_{outer} = \frac{4p}{3}rr^{3}$$

• Prove that displacement of a particle moving under uniform acceleration is, $s=ka^{m}t^{n}$, is dimensionally correct if k is a dimensionless constant, m=1, and n=2.

Displacement: Dimension of Length Acceleration a:Dimension of L/T²

$$[l] = \left[\frac{l}{t^2}\right]^m [t]^n = \left[lt^{-2}\right]^m [t]^n = [l]^m [t]^{-2m+n}$$

$$\therefore m = 1, n - 2m = 0;$$

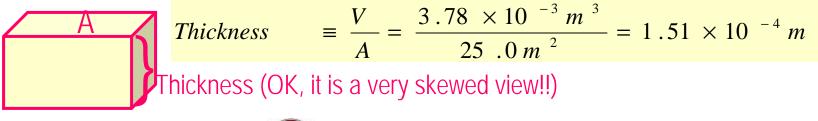
$$\therefore n = 2m = 2$$

Problems 1.25 & 1.31

Find the density, ρ, of lead, in SI unit, whose mass is 23.94g and volume, V, is 2.10cm³.

Density;
$$\mathbf{r} \equiv \frac{?}{V} = \frac{23.94 \ g}{2.10 \ cm^3} = 11 \ .4 \times \frac{\frac{1}{1000} \ kg}{\left(\frac{1}{100} \ m\right)^3} = 11 \ .4 \times 10^{-3} \ kg \ /m^3$$

- Find the thickness of the layer covered by a gallon (V=3.78x10⁻³ m³) of paint spread on an area of on the wall 25.0m².
- Thickness is in the dimension of Length.
- A gallon ($V=3.78 \times 10^{-3} \text{ m}^3$) of paint is covering 25.0m².



Some Fundamentals

- Kinematics: Description of Motion without understanding the cause of the motion
- Dynamics: Description of motion accompanied with understanding the cause of the motion
- Vector and Scalar quantities:
 - Scalar: Physical quantities that require magnitude but no direction
 - Speed, length, mass, etc
 - Vector: Physical quantities that require both magnitude and direction
 - Velocity, Acceleration, Force, Momentum
 - It does not make sense to say "I ran with velocity of 10miles/hour."
- Objects can be treated as point-like if their sizes are smaller than the scale in the problem
 - Earth can be treated as a point like object (or a particle)in celestial problems
 - Any other examples?

Some More Fundamentals

- Motions: Can be described as long as the position is known at any time (or position is expressed as a function of time)
 - Translation: Linear motion along a line
 - Rotation: Circular or elliptical motion
 - Vibration: Oscillation
- Dimensions
 - 0 dimension: A point
 - 1 dimension: Linear drag of a point, resulting in a line →
 Motion in one-dimension is a motion on a line
 - 2 dimension: Linear drag of a line resulting in a surface
 - 3 dimension: Perpendicular Linear drag of a surface, resulting in a stereo object

Displacement, Velocity and Speed

One dimensional displacement is defined as:

 $\Delta x \equiv x_f - x_i$

Displacement is the difference between initial and final potions of motion and is a vector quantity

Average velocity is defined as:

$$v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$$

Displacement per unit time in the period throughout the motion

Average speed is defined as:

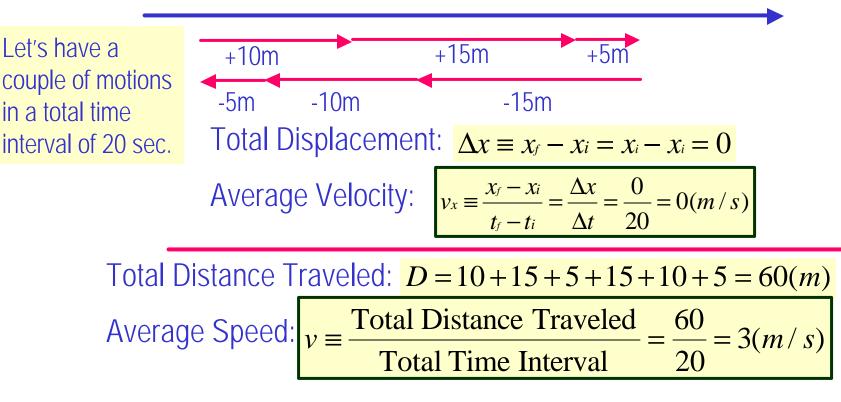
$$v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Time Interval}}$$

Can someone tell me what the difference between speed and velocity is?

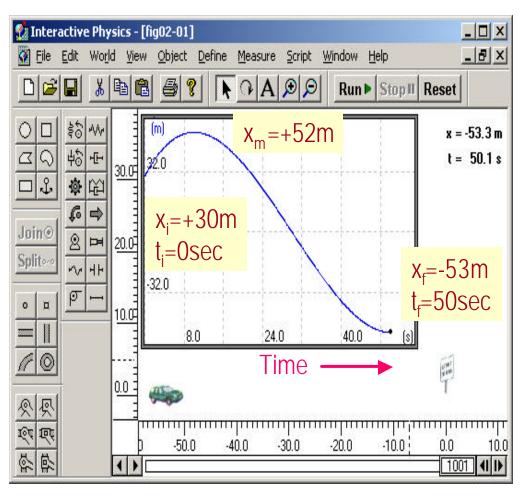
Difference between Speed and Velocity

• Let's take a simple one dimensional translation that has many steps:

Let's call this line as X-axis



Example 2.1

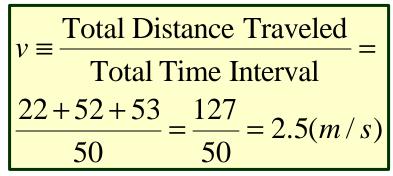


- Find the displacement, average velocity, and average speed.
- Displacement:

$$\Delta x \equiv x_{f} - x_{i} = -53 - 30 = -83(m)$$

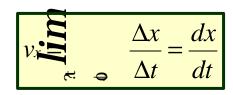
$$v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t} = \frac{-83}{50} = -1.7(m/s)$$

• Average Speed:

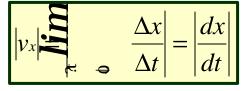


Instantaneous Velocity and Speed

- Here is where calculus comes in to help understanding the concept of "instantaneous quantities"
- •Instantaneous velocity is defined as:
 - -What does this mean?

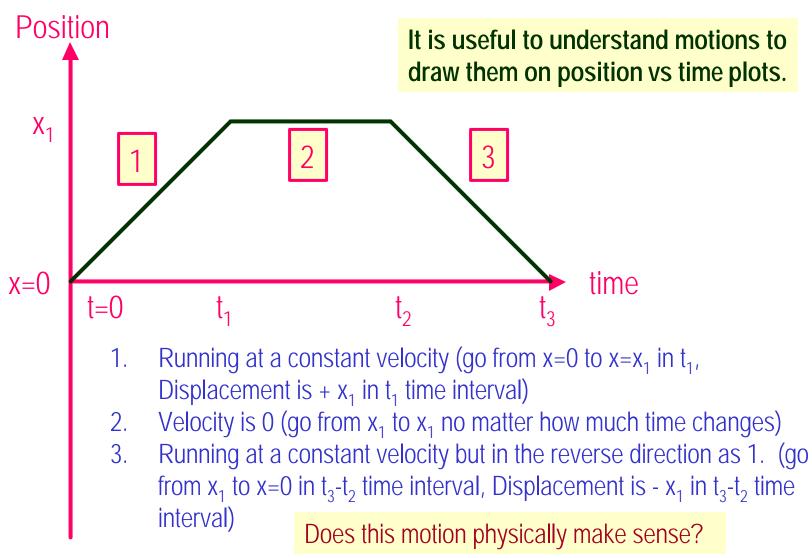


- •Displacement in an infinitesimal time interval
- •Mathematically: Slope of the position variation as a function of time
- •Instantaneous speed is the size (magnitude) of the velocity vector: $\Delta x | dx |$ *Magnitude of Ve

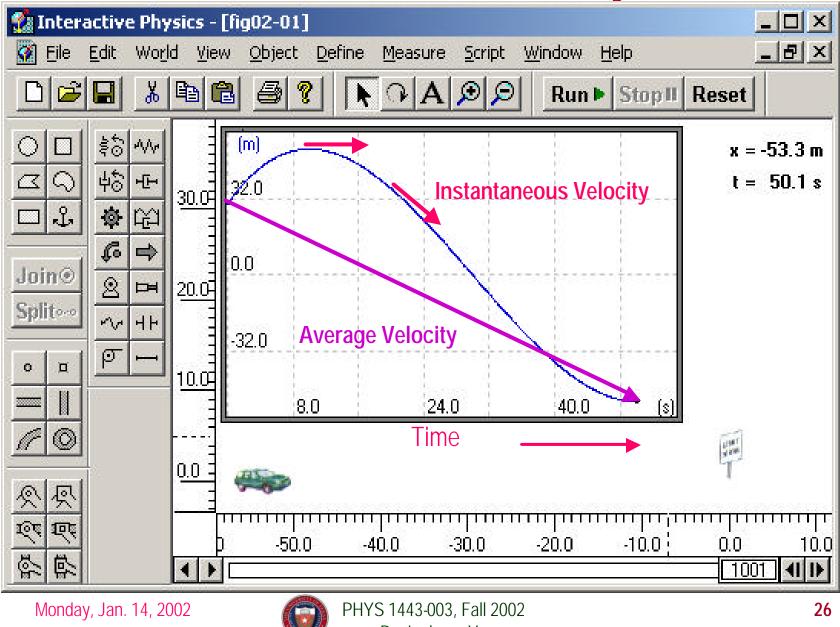


*Magnitude of Vectors are Expressed in absolute values

Position vs Time Plot



Instantaneous Velocity



Dr. Jaehoon Yu

Example 2.2

- Particle is moving along x-axis following the expression: $x = -4t + 2t^2$
- Determine the displacement in the time intervals t=0 to t=1s and t=1 to t=3s: For interval $x_{t=0} = 0, x_{t=1} = -4 \times (1) + 2 \times (1)^2 = -2$

t=0 to t=1s
For interval
t=1 to t=3s

$$\Delta x_{t=0,1} = x_{t=1} - x_{t=0} = -2 - 0 = -2(m)$$

$$x_{t=1} = -2, x_{t=3} = -4 \times (3) + 2 \times (3)^2 = 6$$

$$\Delta x_{t=1,3} = x_{t=3} - x_{t=1} = 6 + 2 = 8(m)$$

- Compute the average velocity in the time intervals t=0 to t=1s and t=1 to t=3s: $v_x = \frac{\Delta x_{t=0,1}}{\Delta x_{t=0,1}} = \frac{-2}{2}(m/s)$ $v_x = \frac{\Delta x_{t=1,3}}{\Delta x_{t=1,3}} = \frac{8}{2} = +4(m/s)$
- Compute the instantaneous velocity at t=2.5s: Instantaneous velocity at any time t

t=0 to t=1s

$$\mathbf{H}_{\mathbf{x}} = \frac{\Delta x}{\Delta t} = \frac{dx}{dt} = \frac{d}{dt} \left(-4t + 2t^2 \right) = -4 + 4t$$

Monday, Jan. 14, 2002

 $v_x(t)$

Instantaneous velocity at *t=2.5s*

$$v_x(t=2.5)=-4+4\times(2.5)=+6(m/s)$$

Acceleration

Change of velocity in time (what kind of quantity is this?)

•Average acceleration:

$$a_{x} \equiv \frac{v_{xf} - v_{xi}}{t_{f} - t_{i}} = \frac{\Delta v_{x}}{\Delta t} \quad \text{analogs to} \quad v_{x} \equiv \frac{x_{f} - x_{i}}{t_{f} - t_{i}} = \frac{\Delta x}{\Delta t}$$

•Instantaneous acceleration:

$$a = \frac{\Delta v_x}{\Delta t} = \frac{dv_x}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2 x}{dt^2} \text{ analogs to } \quad v = \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

 In calculus terms: A slope (derivative) of velocity with respect to time or change of slopes of position as a function of time

Example 2.4

- Velocity, $v_{x'}$ is express in: $v_x(t) = (40 5t^2)m / s$
- Find average acceleration in time interval, t=0 to t=2.0s

$$v_{xi}(t_i = 0) = 40 (m / s)$$

$$v_{xf}(t_f = 2.0) = (40 - 5 \times 2^2) = 20 (m / s)$$

$$a_x = \frac{v_{xf} - v_{xi}}{t_f - t_i} = \frac{\Delta v_x}{\Delta t} = \frac{20 - 40}{2 - 0} = -10 (m / s^2)$$

•Find instantaneous acceleration at any time t and t=2.0s

Instantaneous Acceleration at any time

$$a_x(t) \equiv \frac{dv_x}{dt} = \frac{d}{dt} \left(40 - 5t^2 \right) = -10t$$

Instantaneous Acceleration at any time t=2.0s

$$a_x(t = 2.0)$$

= -10×(2.0)
= -20(m/s²)

Meanings of Acceleration

- When an object is moving in a constant velocity (v=v₀), there is no acceleration (a=0)
 - Is there any acceleration when an object is not moving?
- When an object is moving faster as time goes on,
 (v=v(t)), acceleration is positive (a>0)
- When an object is moving slower as time goes on,
 (v=v(t)), acceleration is negative (a<0)
- In all cases, velocity is positive, unless the direction of the movement changes.
- Is there acceleration if an object moves in a constant speed but changes direction? The answer is YES!!

