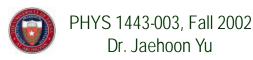
# PHYS 1443 – Section 003 Lecture #3

Wednesday, Sept. 11, 2002 Dr. **Jae**hoon Yu

- 1. 2-D Displacement, Velocity and Speed
- 2. Projectile Motion
- 3. Uniform Circular Motion
- 4. Nonuniform Circular Motion
- 5. Relative Motion

Today's homework is homework #4, due 1am, next Wednesday!!



#### Announcements

- e-mail:24 of you have subscribed so far.
  - This is the primary communication tool. So do it ASAP.
  - A test message will be sent this Wednesday.
- Homework registration: 45 of you have registered (I have 56 of you)
  - Roster will be locked at the end of the day today (5:30pm), Sept. 11



#### Kinematic Equations of Motion on a Straight Line Under Constant Acceleration

$$v_{xf}(t) = v_{xi} + a_x t$$

Velocity as a function of time

$$x_f - x_i = \frac{1}{2}\overline{v_x}t = \frac{1}{2}(v_{xf} + v_{xi})t$$

Displacement as a function of velocity and time

$$x_f - x_i = v_{xi}t + \frac{1}{2}a_xt^2$$

Displacement as a function of time, velocity, and acceleration

$$v_{xf}^{2} = v_{xi}^{2} + 2a_{x}(x_{f} - x_{i})$$

Velocity as a function of Displacement and acceleration

You may use different forms of Kinematic equations, depending on the information given to you for specific physical problems!!

Wednesday, Sept. 11, 2002



# Free Fall

- Free fall is a motion under the influence of gravitational pull (gravity) only; Which direction is a freely falling object moving?
- Gravitational acceleration is inversely proportional to the distance between the object and the center of the earth
- The gravitational acceleration is g=9.80m/s<sup>2</sup> on the surface of the earth, most of the time.
- The direction of gravitational acceleration is <u>ALWAYS</u> toward the center of the earth, which we normally call (-y); where up and down direction are indicated as the variable "y"
- Thus the correct denotation of gravitational acceleration on the surface of the earth is  $g=-9.80m/s^2$



#### Displacement, Velocity, and Acceleration in 2-dim

- Displacement:
- Average Velocity:
- Instantaneous Velocity:
- Average
   Acceleration
- Instantaneous
   Acceleration:

$$\Delta \vec{r} = \vec{r}_f - \vec{r}_i$$

$$\vec{v} \equiv \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}_f - \vec{r}_i}{t_f - t_i}$$

$$\vec{v} \equiv \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d \vec{r}}{dt}$$

How is each of these quantities defined in 1-D?

$$\vec{a} \equiv \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_f - \vec{v}_i}{t_f - t_i}$$

$$\vec{a} \equiv \lim_{\Delta t \to 0} \frac{\vec{\Delta v}}{\Delta t} = \frac{\vec{d v}}{dt} = \frac{d}{dt} \left( \frac{\vec{d r}}{dt} \right) = \frac{\vec{d^2 r}}{dt^2}$$



#### 2-dim Motion Under Constant Acceleration

- Position vectors in x-y plane:  $\vec{r}_i = x_i \vec{i} + y_i \vec{j}$   $\vec{r}_f = x_f \vec{i} + y_f \vec{j}$
- Velocity vectors in x-y plane:  $\vec{v}_i = v_{xi}\vec{i} + v_{yi}\vec{j}$

$$\vec{v}_f = v_{xf} \vec{i} + v_{yf} \vec{j}$$

Velocity vectors in terms of acceleration vector

$$v_{xf} = v_{xi} + a_x t \qquad v_{yf} = v_{yi} + a_y t$$
$$\vec{v}_f = (v_{xi} + a_x t)\vec{i} + (v_{yi} + a_y t)\vec{j} = \vec{v}_i + \vec{a}t$$

How are the position vectors written in acceleration vectors?

$$x_{f} = x_{i} + v_{xi}t + \frac{1}{2}a_{x}t^{2} \qquad y_{f} = y_{i} + v_{yi}t + \frac{1}{2}a_{y}t^{2}$$

$$\vec{r}_{f} = \left(x_{i} + v_{xi}t + \frac{1}{2}a_{x}t^{2}\right)\vec{i} + \left(y_{i} + v_{yi}t + \frac{1}{2}a_{y}t^{2}\right)\vec{j}$$

$$\vec{r}_{f} = (x_{i}\vec{i} + y_{i}\vec{j}) + (v_{xi}\vec{i} + v_{yi}\vec{j})t + \frac{1}{2}(a_{x}\vec{i} + a_{y}\vec{j})t^{2} = \vec{r}_{i} + \vec{v}_{i}t + \frac{1}{2}\vec{a}t^{2}$$

Wednesday, Sept. 11, 2002





## Example 4.1

A particle starts at origin when t=0 with an initial velocity  $\mathbf{v}$ =(20**i**-15**j**)m/s. The particle moves in the xy plane with  $a_x = 4.0 m/s^2$ . Determine the components of velocity vector at any time, t.

$$v_{xf} = v_{xi} + a_x t = 20 + 4.0t(m/s)$$

40

$$v_{yf} = v_{yi} + a_y t = -15(m/s)$$

$$\vec{v}(t) = \{ (20 + 4.0t)\vec{i} - 15\vec{j} \} m / s \}$$

Compute the velocity and speed of the particle at t=5.0 s.

$$\vec{v} = \{(20 + 4.0 \times 5.0)\vec{i} - 15\vec{j}\}m/s = (40\vec{i} - 15\vec{j})m/s$$
$$q = \tan^{-1}\left(\frac{-15}{40}\right) = \tan^{-1}\left(\frac{-3}{20}\right) = -21^{\circ}$$

speed = 
$$|\vec{v}| = \sqrt{(v_x)^2 + (v_y)^2}$$
  
=  $\sqrt{(40)^2 + (-15)^2} = 43 \ m \ / \ s$ 

 $\vec{r}_{f} = x_{f}\vec{i} + y_{f}\vec{j} = (150\vec{i} - 75\vec{j})m$ 

Determine the x and y components of the particle at t=5.0 s.

8

$$x_{f} = v_{xi}t + \frac{1}{2}a_{x}t^{2} = 20 \times 5 + \frac{1}{2} \times 4 \times 5^{2} = 150(m)$$
$$y_{f} = v_{yi}t = -15 \times 5 = -75(m)$$

Can you write down the position vector at t=5.0s?

1,2002



# **Projectile Motion**

- Fig04-06.ip
   A 2-dim motion of an object under the gravitational acceleration with the assumptions
  - Free fall acceleration, -*g*, is constant over the range of the motion
  - Air resistance and other effects are negligible
  - A motion under constant acceleration!!!! → Superposition of two motions
    - Horizontal motion with constant velocity and
    - Vertical motion under constant acceleration

Show that a projectile motion is a parabola!!!

In a projectile motion, the only acceleration is gravitational one whose direction is always toward the center of the earth (downward).

$$v_{xi} = v_i \cos q_i; \quad v_{yi} = v_i \sin q_i$$

$$\overrightarrow{a} = a_x \overrightarrow{i} + a_y \overrightarrow{j} = -g \overrightarrow{j} \quad \overrightarrow{a_z=0} \quad x_f = v_{xi}t = v_i \cos q_i t \quad t = \frac{x_f}{v_i \cos q_i}$$

$$y_f = v_{yi}t + \frac{1}{2}(-g)t^2$$

$$plug \text{ in the } \quad y_f = v_i \sin q_i \left(\frac{x_f}{v_i \cos q_i}\right) - \frac{1}{2}g\left(\frac{x_f}{v_i \cos q_i}\right)^2$$

$$y_f = x_f \tan q_i - \left(\frac{g}{2v_i^2 \cos^2 q_i}\right)x_f^2$$
Wednesday, Sept. 11, 2002
$$PHYS 1443-003, Fall 2002$$

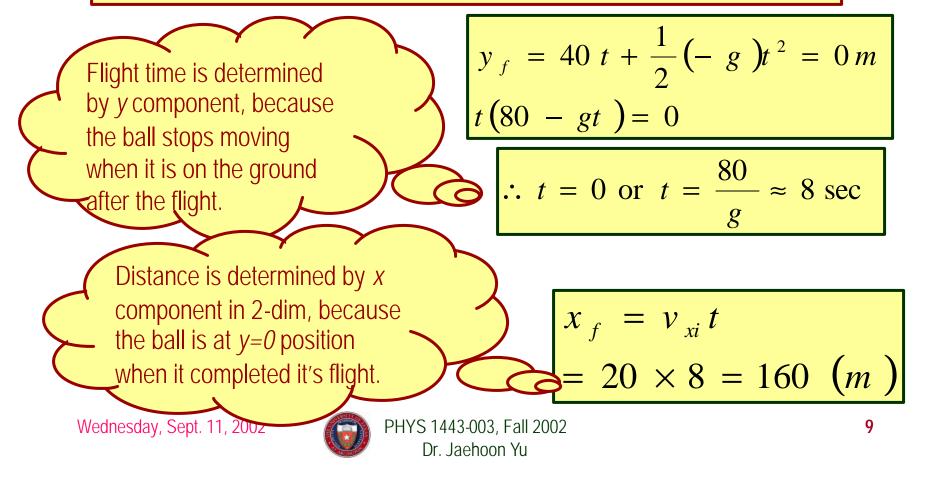
$$PHYS 1443-003, Fall 2002$$

$$What kind of parabola is this?$$

### Example 4.2

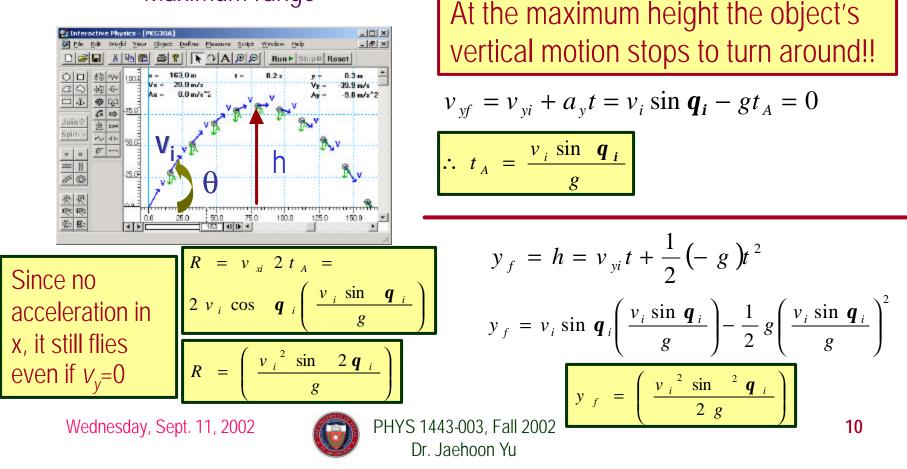
A ball is thrown with an initial velocity  $\mathbf{v}=(20\mathbf{i}+40\mathbf{j})\mathbf{m/s}$ . Estimate the time of flight and the distance the ball is from the original position when landed.

Which component determines the flight time and the distance?



# Horizontal Range and Max Height

- Based on what we have learned in the previous pages, one can analyze a projectile motion in more detail
  - Maximum height an object can reach What happens at the maximum height?
  - Maximum range



# Maximum Range and Height

• What are the conditions that give maximum height and range of a projectile motion?

