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PHYS 1443 – Section 003
Lecture #12
Monday, Oct. 23, 2002

Dr. Jaehoon Yu

1. Rocket Propulsion
2. Fundamentals on Rotation
3. Rotational Kinematics
4. Relationship Between Angular and Linear Quantities

Today’s homework is homework #13 due 12:00pm, Wednesday, Nov. 6!!
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Announcements
• 2nd Term exam 

– Wednesday, Oct. 30, in the class
– Covers chapters 6 – 10

• Magda Cortez, David Hunt and Dhumil Patel, please come 
and see me after the class
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Motion of a Group of Particles
We’ve learned that the CM of a system can represent the motion of a system.  
Therefore, for an isolated system of many particles in which thetotal mass 
M is preserved, the velocity, total momentum, acceleration of the system are

Velocity of the system CMv

Total Momentum 
of the system CMp

Acceleration of 
the system CMa

External force exerting 
on the system ext

F∑

If net external force is 0 0=∑ ext
F System’s momentum 

is conserved.

What about the 
internal forces?

dt
rd CM

= 


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
= ∑ ii rm

Mdt
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dt
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vd CM= 
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Rocket Propulsion
What is the biggest difference between ordinary vehicles and a rocket?

Since there is no road to push against, rockets obtain propulsion from momentum 
conservation in the system consists of the rocket and gas from burnt fuel. 

( )vmMpi ∆+=Initial momentum before burning fuel

The force that gives propulsion for normal vehicles is the friction between the surface 
of the road and the tire. The system in this case consists of the tire and the surface of 
the road. Newton’s 3rd law and the momentum conservation of an isolated system.

M+∆m
v

( ) ( )gf vvmvvMp −∆+∆+=Final momentum after burning 
fuel and ejecting the gasM

v+ ∆v
∆m
v−vg

From momentum conservation ( ) ( )gvvmvvM −∆+∆+

Since dm is the same as 
–dM, one can obtain dv

Thrust is the force exerted on the rocket by the ejected gas
Thrust

mvMv ∆+= vM∆ gmv∆=

M

dmv g= vd
f

i∫ if vv −= ∫ =−=
f

ig M
dMv 











f

i
g M

M
v ln

dt
dv

M=
dt

dM
vg=
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Example 9.18

Precisely the case we’ve discussed in the previous slide.

A rocket moving in free space has a speed of 3.0x103 m/s relative to the Earth.  Its 
engines are turned on, and fuel is ejected in a direction opposite the rocket’s motion 
at a speed of 5.0x103 m/s relative to rocket.  A) What is the speed of the rocket 
relative to the Earth once its mass is reduced to one-half the mass before ignition?

Find the thrust on the rocket if it burns fuel at the rate of 50kg/s?

M+∆m
v

M
v+ ∆v

∆m
v −vg

fv

Since the thrust is given proportional to the rate of mass 
change or the rate the fuel burns as given in the formula dt

dM
v

dt
dv

MThurst g==

Nskgsm 75 105.2/50/100.5 ×=××=One can obtain











+=

f

i
gi M

M
vv ln ( ) sm/105.62ln100.5100.3 333 ×=××+×=

dt
dM

vThurst g=
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Fundamentals on Rotation
Linear motions can be described as the motion of the center of 
mass with all the mass of the object concentrated on it.   

Is this still true for 
rotational motions?

No, because different parts of the object have 
different linear velocities and accelerations.

Consider a motion of a rigid body – an object that 
does not change its shape – rotating about the axis 
protruding out of the slide. 

One radian is the angle swept by an arc length equal to the radius of the arc.
o360Since the circumference of a circle is 2πr,

The relationship between radian and degrees is

θr
P

s

O
θrs =The arc length, or sergita, is

r
s

=θTherefore the angle, θ, is            . And the unit of 
the angle is in radian.

rad 1

rr /2π= π2=

π2/360 o= π/180 o=
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Using what we have learned in the previous slide, how 
would you define the angular displacement? if θθθ −=∆
Angular Displacement, Velocity, and Acceleration

How about the average angular speed?
ttt if

if

∆
∆

=
−
−

≡
θθθ

ω

And the instantaneous angular speed? dt
d

tt

θθ
ω =

∆
∆

≡
→∆

lim
0

By the same token, the average angular 
acceleration ttt if

if

∆
∆

=
−
−

≡
ωωω

α

And the instantaneous angular 
acceleration? dt

d
tt

ωω
α =

∆
∆

≡
→∆

lim
0

When rotating about a fixed axis, every particle on a rigid object rotates through  
the same angle and has the same angular speed and angular acceleration.

θi

θf
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Rotational Kinematics
The first type of motion we have learned in linear kinematics was 
under a constant acceleration.  We will learn about the rotational 
motion under constant acceleration, because these are the simplest 
motions in both cases.

tif αωω +=

Just like the case in linear motion, one can obtain

Angular Speed under constant 
angular acceleration:

Angular displacement under 
constant angular acceleration:

2

2
1

ttiif αωθθ ++=

One can also obtain ( )ifif θθαωω −+= 222
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Example 10.1
A wheel rotates with a constant angular acceleration pf 3.50 rad/s2.  If 
the angular speed of the wheel is 2.00 rad/s at ti=0, a) through what 
angle does the wheel rotate in 2.00s?

if θθ −
Using the angular displacement 
formula in the previous slide, one gets

What is the angular speed at t=2.00s? tif αωω +=

Using the angular speed and 
acceleration relationship

Find the angle through which the wheel 
rotates between t=2.00 s and t=3.00 s.

rad0.112 =θ

2

2
1 tt αω +=

( )200.250.3
2
1

00.200.2 ×+×= rad0.11=

.75.1.
2

0.11 revrev ==
π

srad/00.900.250.300.2 =×+=
( ) rad8.2100.350.3

2
1

00.300.2 2
3 =×+×=θ

θ∆ 2θθ −= 3 rad8.10= .72.1.
2

8.10 revrev ==
π



Wednesday, Oct. 23, 2002 PHYS 1443-003, Fall 2002
Dr. Jaehoon Yu

10

Relationship Between Angular and Linear Quantities
What do we know about a rigid object that rotates 

about a fixed axis of rotation?

When a point rotates, it has both the linear and angular motion 
components in its motion.  
What is the linear component of the motion you see?

tv

Every particle (or masslet) in the object moves in a 
circle centered at the axis of rotation.

ri

P

θ

O x

y vt

Linear velocity along the tangential direction.
How do we related this linear component of the motion 
with angular component?
θrs =The arc-length is So the tangential speed vt is

What does this relationship tell you about 
the tangential speed of the points in the 
object and their angular speed?:

Although every particle in the object has the same 
angular speed, its tangential speed differs 
proportional to its distance from the axis of rotation.

The farther away the particle is from the center of 
rotation, the higher the tangential speed.

The 
direction 
of ω
follows a 
right-hand 
rule.

dt
ds

= ( )θr
dt
d

=
dt
d

r
θ

= ωr=
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How about the Accelerations?

ωrvt =

r
P

θ

O x

y at Two
How many different linear accelerations do you see 
in a circular motion and what are they?

Total linear acceleration is

Since the tangential speed vt is

What does this 
relationship tell you?

Although every particle in the object has the same angular 
acceleration, its tangential acceleration differs proportional to its 
distance from the axis of rotation.

Tangential, at, and the radial acceleration, ar.ar

taThe magnitude of tangential 
acceleration at is

The radial or centripetal acceleration ar is ra

a

What does 
this tell you?

The father away the particle from the rotation axis the more radial 
acceleration it receives.  In other words, it receives more centripetal force.

a

dt
dvt= ( )ωr

dt
d

=
dt
d

r
ω

= αr=

r
v2

=
( )

r
r 2ω

= 2ωr=

22
rt aa += ( ) ( )222 ωα rr += 42 ωα +=r
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Example 10.2
Audio information on compact discs are transmitted digitally through the readout system consisting of 
laser and lenses.   The digital information on the disc are stored by the pits and flat areas on the track.   
Since the speed of readout system is constant, it reads out the same number of pits and flats in the same 
time interval.  In other words, the linear speed is the same no matter which track is played.  a) Assuming 
the linear speed is 1.3 m/s, find the angular speed of the disc in revolutions per minute when the inner 
most (r=23mm) and outer most tracks (r=58mm) are read.

Using the relationship 
between angular and 
tangential speed

b) The maximum playing time of a standard music 
CD is 74 minutes and 33 seconds.  How many 
revolutions does the disk make during that time?

c) What is the total length of the track past through the readout mechanism?

ω

l

d) What is the angular acceleration of the CD over 
the 4473s time interval, assuming constant α?

α

r
v=ω srad

mm
sm

/5.56
1023
3.1

23
/3.1

3 =
×

== − min/104.5/00.9 2revsrev ×==

srad
mm

sm
/4.22

1058
3.1

58
/3.1

3 =
×

== −ω min/101.2 2 rev×=ωrv= mmr 58=

mmr 23=

( )
2

fi ωω +
=

( ) min/375
2

min/210540 revrev =+=

fθ ti  ωθ += revssrev 4108.24473/
60
375

0 ×=×+=

tvt∆=
m

ssm
3108.5

4473/3.1

×=

×=

( )
t

if

∆
−

=
ωω ( )

23 /106.7
4473

/5.564.22

srad
s

srad

−×=

−
=
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Rotational Energy
What do you think the kinetic energy of a rigid object 
that is undergoing a circular motion is? 

Since a rigid body is a collection of masslets, 
the total kinetic energy of the rigid object is

By defining a new quantity called, 
Moment of Inertia, I, as

Kinetic energy of a masslet, mi, 
moving at a tangential speed, vi, is

What are the dimension and unit of Moment of Inertia?

ri

mi

θ

O x

y vi

iK

RK

∑=
i

iirmI 2 2= ωIKR 2
1The above expression 

is simplified as
2mkg⋅ [ ]2ML

What similarity do you see between 
rotational and linear kinetic energies?

What do you think the 
moment of inertia is?

Measure of resistance of an object to 
changes in its rotational motion.

Mass and speed in linear kinetic energy are 
replaced by moment of inertia and angular speed.

2

2
1

iivm= 2= ω2

2
1

iirm

∑=
i

iK ∑ 2=
i

iirm ω2
2
1 2







= ∑ ω
i

iirm 2

2
1



Wednesday, Oct. 23, 2002 PHYS 1443-003, Fall 2002
Dr. Jaehoon Yu

14

Example 10.4
In a system consists of four small spheres as shown in the figure, assuming the radii are 
negligible and the rods connecting the particles are massless, compute the moment of 
inertia and the rotational kinetic energy when the system rotates about the y-axis at ω.

I

Since the rotation is about y axis, the moment of 
inertia about y axis,Iy, is

RKThus, the rotational kinetic energy is 

Find the moment of inertia and rotational kinetic energy when the system rotates on 
the x-y plane about the z-axis that goes through the origin O.

x

y

This is because the rotation is done about y axis, 
and the radii of the spheres are negligible.Why are some 0s?

M Ml l

m

m

b

bO

I RK

2
i

i
irm∑= 2222 00 ⋅+⋅++= mmMlMl 22Ml=

2

2
1 ωI= ( ) 222

2
1 ωMl= 22ωMl=

2
i

i
irm∑= 2222 mbmbMlMl +++= ( )222 mbMl += 2

2
1

ωI= ( ) 222 22
2
1

ωmbMl += ( ) 222 ωmbMl +=


