PHYS 1443 – Section 003 Lecture #12

Monday, Oct. 23, 2002 Dr. **Jae**hoon Yu

- 1. Rocket Propulsion
- 2. Fundamentals on Rotation
- 3. Rotational Kinematics
- 4. Relationship Between Angular and Linear Quantities

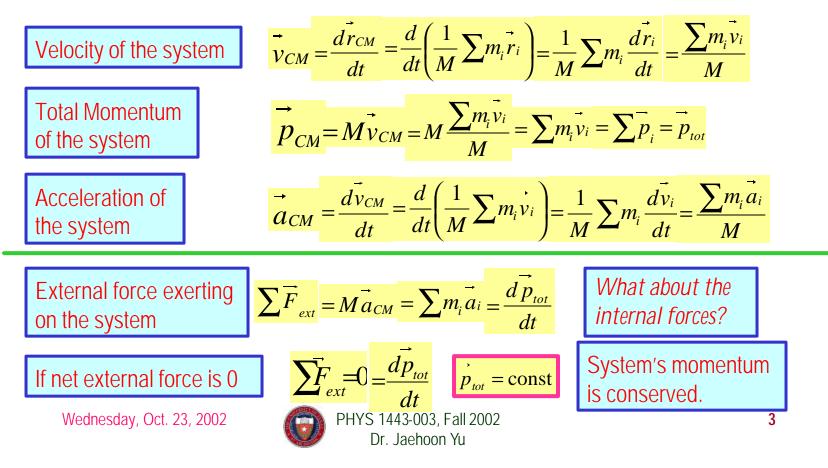
Today's homework is homework #13 due 12:00pm, Wednesday, Nov. 6!

Announcements

- 2nd Term exam
 - Wednesday, Oct. 30, in the class
 - Covers chapters 6 10
- Magda Cortez, David Hunt and Dhumil Patel, please come and see me after the class

Motion of a Group of Particles

We've learned that the CM of a system can represent the motion of a system. Therefore, for an isolated system of many particles in which the total mass M is preserved, the velocity, total momentum, acceleration of the system are

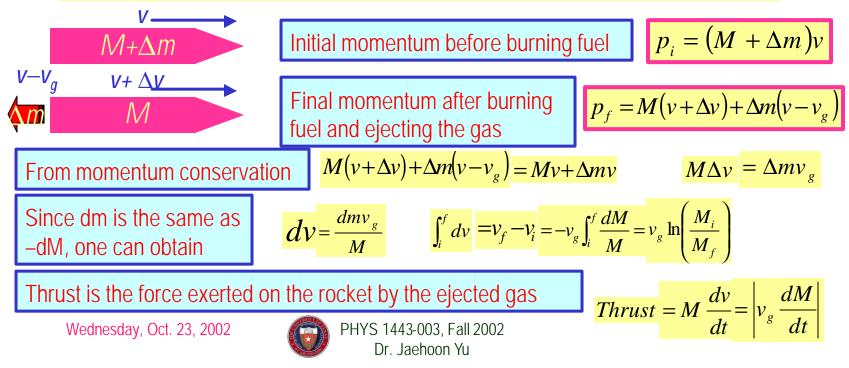


Rocket Propulsion

What is the biggest difference between ordinary vehicles and a rocket?

The force that gives propulsion for normal vehicles is the friction between the surface of the road and the tire. The system in this case consists of the tire and the surface of the road. Newton's 3rd law and the momentum conservation of an isolated system.

Since there is no road to push against, rockets obtain propulsion from momentum conservation in the system consists of the rocket and gas from burnt fuel.



Example 9.18

A rocket moving in free space has a speed of 3.0x10³ m/s relative to the Earth. Its engines are turned on, and fuel is ejected in a direction opposite the rocket's motion at a speed of 5.0x10³ m/s relative to rocket. A) What is the speed of the rocket relative to the Earth once its mass is reduced to one-half the mass before ignition?

Precisely the case we've discussed in the previous slide.

$$V - V_g$$
 $V + \Delta V$
 $V_f = v_i + v_g \ln\left(\frac{M_i}{M_f}\right) = 3.0 \times 10^3 + 5.0 \times 10^3 \times \ln(2) = 6.5 \times 10^3 m/s$

Find the thrust on the rocket if it burns fuel at the rate of 50kg/s?

Since the thrust is given proportional to the rate of mass change or the rate the fuel burns as given in the formula

Thurst =
$$M \frac{dv}{dt} = \left| v_g \frac{dM}{dt} \right|$$

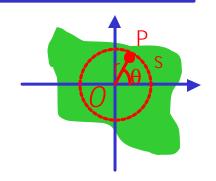
One can obtain
$$Thurst = \left| v_g \frac{dM}{dt} \right| = 5.0 \times 10^5 \, m/s \times 50 \, kg \, s = 2.5 \times 10^7 \, N$$

Wednesday, Oct. 23, 2002

Fundamentals on Rotation

Linear motions can be described as the motion of the center of mass with all the mass of the object concentrated on it.

Is this still true for rotational motions?



No, because different parts of the object have different linear velocities and accelerations.

Consider a motion of a rigid body – an object that does not change its shape – rotating about the axis protruding out of the slide.

The arc length, or sergita, is s = rq

Therefore the angle, θ , is $q = \frac{s}{r}$. And the unit of the angle is in radian.

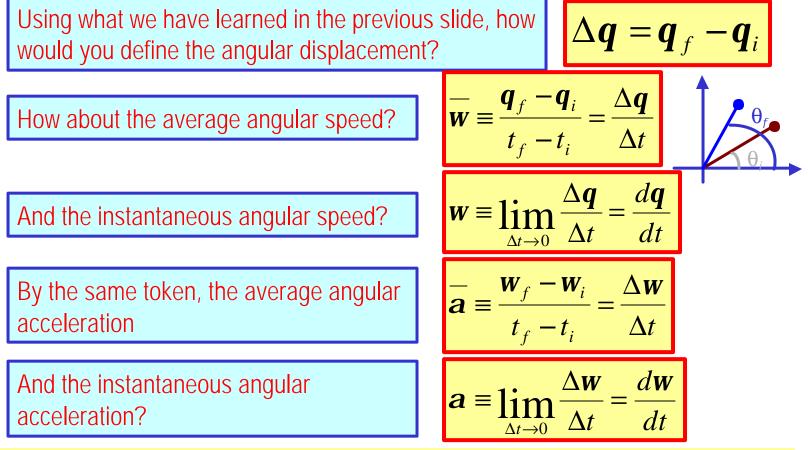
One radian is the angle swept by an arc length equal to the radius of the arc.

Since the circumference of a circle is $2\pi r$, $360^{\circ} = 2pr/r = 2p$

The relationship between radian and degrees is $1 \text{ rad} = 360^{\circ} / 2p = 180^{\circ} / p$

Wednesday, Oct. 23, 2002

Angular Displacement, Velocity, and Acceleration



When rotating about a fixed axis, every particle on a rigid object rotates through the same angle and has the same angular speed and angular acceleration. Wednesday, Oct. 23, 2002 PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu

Rotational Kinematics

The first type of motion we have learned in linear kinematics was under a constant acceleration. We will learn about the rotational motion under constant acceleration, because these are the simplest motions in both cases.

Just like the case in linear motion, one can obtain

Angular Speed under constant angular acceleration:

Angular displacement under constant angular acceleration:

 $\boldsymbol{w}_f = \boldsymbol{w}_i + \boldsymbol{a}t$

$$\boldsymbol{q}_f = \boldsymbol{q}_i + \boldsymbol{w}_i t + \frac{1}{2} \boldsymbol{a} t^2$$

One can also obtain

 $\boldsymbol{w}_f^2 = \boldsymbol{w}_i^2 + 2\boldsymbol{a} \left(\boldsymbol{q}_f - \boldsymbol{q}_i \right)$

Wednesday, Oct. 23, 2002

Example 10.1

A wheel rotates with a constant angular acceleration pf 3.50 rad/s^2 . If the angular speed of the wheel is 2.00 rad/s at $t_i=0$, a) through what angle does the wheel rotate in 2.00s?

Using the angular displacement formula in the previous slide, one gets

$$q_{f} - q_{i} = wt + \frac{1}{2}at^{2}$$

$$= 2.00 \times 2.00 + \frac{1}{2}3.50 \times (2.00)^{2} = 11.0rad$$

$$= \frac{11.0}{2p}rev = 1.75rev$$

$$W_{f} = W_{i} + at$$

$$= 2.00 + 3.50 \times 2.00 = 9.00rad/s$$

 $\boldsymbol{q}_2 = 11.0 rad \quad \boldsymbol{q}_3 = 2.00 \times 3.00 + \frac{1}{2} 3.50 \times (3.00)^2 = 21.8 rad$

What is the angular speed at t=2.00s?

Using the angular speed and acceleration relationship

Find the angle through which the wheel rotates between t=2.00 s and t=3.00 s.

 $\Delta q = q_3 - q_2 = 10.8 rad = \frac{10.8}{2} rev. = 1.72 rev.$ PHYS 1443-003, Fall 2002

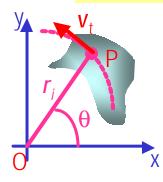
Wednesday, Oct. 23, 2002

Dr. Jaehoon Yu

Relationship Between Angular and Linear Quantities

What do we know about a rigid object that rotates about a fixed axis of rotation?

Every particle (or masslet) in the object moves in a circle centered at the axis of rotation.



When a point rotates, it has both the linear and angular motion components in its motion.

What is the linear component of the motion you see?

Linear velocity along the tangential direction.

direction of $\boldsymbol{\omega}$ follows a right-hand rule.

How do we related this linear component of the motion with angular component?

The arc-length is s = rq So the tangential speed v_t is

is
$$V_t = \frac{ds}{dt} = \frac{d}{dt}(r\mathbf{q}) =$$

Although every particle in the object has the same

proportional to its distance from the axis of rotation.

$$\frac{d}{dt}(r\mathbf{q}) = r\frac{d\mathbf{q}}{dt} = \mathbf{r}\mathbf{V}$$

What does this relationship tell you about the tangential speed of the points in the object and their angular speed?:

Wednesday, Oct. 23, 2002

PHYS 1The farther away the particle is from the center of
rotation, the higher the tangential speed.10

angular speed, its tangential speed differs

y a_t a_r a_r

What does this relationship tell you?

How about the Accelerations?

How many different linear accelerations do you see in a circular motion and what are they? Two

Tangential, a_{t} , and the radial acceleration, a_{r} .

Since the tangential speed v_t is $v_t = r w$

The magnitude of tangential acceleration a_t is

$$=\frac{dv_t}{dt}=\frac{d}{dt}(r\mathbf{w})=r\frac{d\mathbf{w}}{dt}=r\mathbf{a}$$

Although every particle in the object has the same angular acceleration, its tangential acceleration differs proportional to its distance from the axis of rotation.

The radial or centripetal acceleration a_r is

$$\boldsymbol{a}_r = \frac{v^2}{r} = \frac{(r\boldsymbol{w})^2}{r} = r\boldsymbol{w}^2$$

What does
this tell you?The father away the particle from the rotation axis the more radial
acceleration it receives. In other words, it receives more centripetal force.

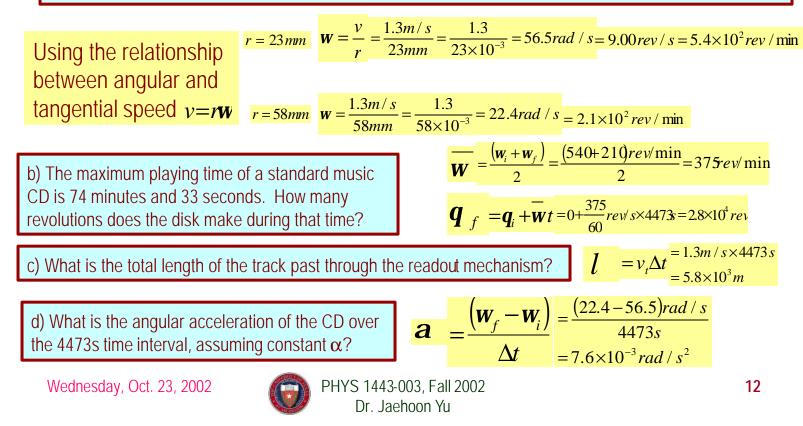
Total linear acceleration is

Wednesday, Oct. 23, 2002

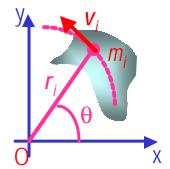
$$a = \sqrt{a_t^2 + a_r^2} = \sqrt{(ra)^2 + (rw^2)^2} = r\sqrt{a^2 + w^4}$$

Example 10.2

Audio information on compact discs are transmitted digitally through the readout system consisting of laser and lenses. The digital information on the disc are stored by the pits and flat areas on the track. Since the speed of readout system is constant, it reads out the same number of pits and flats in the same time interval. In other words, the linear speed is the same nomatter which track is played. a) Assuming the linear speed is 1.3 m/s, find the angular speed of the disc in revolutions per minute when the inner most (r=23mm) and outer most tracks (r=58mm) are read.



Rotational Energy



What do you think the kinetic energy of a rigid object that is undergoing a circular motion is?

Kinetic energy of a masslet, m_{i} , moving at a tangential speed, v_i , is

Since a rigid body is a collection of masslets, the total kinetic energy of the rigid object is

By defining a new quantity called, Moment of Inertia, *I*, as

$$I = \sum_{i} m_{i} r_{i}^{2}$$

The above expression is simplified as

 $K_{R} = \sum_{i} K_{i} = \frac{1}{2} \sum_{i} m_{i} r_{i}^{2} \mathbf{w}^{2} = \frac{1}{2}$

 $K_i = \frac{1}{2}m_i v_i^2 = \frac{1}{2}m_i r_i^2 \mathbf{w}^2$

What are the dimension and unit of Moment of Inertia?

What do you think the moment of inertia is?

What similarity do you see between
rotational and linear kinetic energies?Mass and special
replaced by r

Measure of resistance of an object to changes in its rotational motion.

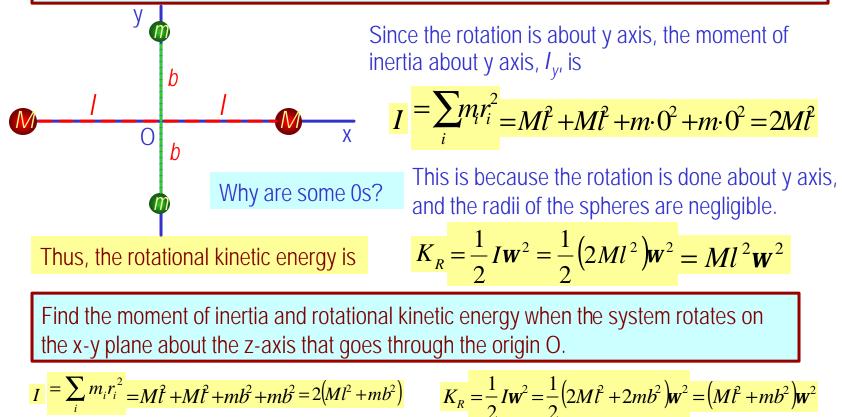
Mass and speed in linear kinetic energy are replaced by moment of inertia and angular speed.

Wednesday, Oct. 23, 2002

PHYS 1443-003, Fall 2002 Dr. Jaehoon Yu $K_R = -IW$

Example 10.4

In a system consists of four small spheres as shown in the figure, assuming the radii are negligible and the rods connecting the particles are massless, compute the moment of inertia and the rotational kinetic energy when the system rotates about the y-axis at ω .



Wednesday, Oct. 23, 2002

0