PHYS 1443 — Section 003
Lecture #13

Monday, Oct. 28, 2002
Dr. Jaehoon Yu

Rotational Kinetic Energy

Calculation of Moment of Inertia

Relationship Between Angular and Linear Quantities
Review
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There is no homework today!! Prepare well for the exam!!

Monesday, Oct. 28, 2002 e PHYS 1443-003, Fall 2002
Dr. Jaehoon Yu



Announcements

e 20 Term exam

— This Wednesday, Oct. 30, in the class

— Covers chapters 6 — 10

— No need to bring blue book

— Some fundamental formulae will be given

— Bring your calculators but delete all the formulae
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Rotational Kinematics

The first type of motion we have learned in linear kinematics was
under a constant acceleration. We will learn about the rotational
motion under constant acceleration, because these are the simplest
motions in both cases.

Just like the case in linear motion, one can obtain

Angular Speed under constant

angular acceleration: W, =w,; tat

Angular displacement under
constant angular acceleration:

g; =q; +w.t +%at2

One can also obtain sz :Wi2 + 22 (q . - Q. )
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Rotational Energy

What do you think the kinetic energy of a rigid object
that is undergoing a circular motion is?

Kinetic energy of amasslet, m, K, = % mv? = % mr 2w’
moving at a tangential speed, v;, is

: i . : _ 0 1 1 -
Since a rlgld k_)ody IS a coIIecthn of m_assl_ets, K= a K == é mrizwz :_gﬁé ”ﬂﬁzQWz

the total kinetic energy of the rigid object is . 2- 28 g
By defining a new quantity called, | = é mri2 The above expression K, = —1Ivvz
Moment of Inertia, I, as i is simplified as 2

What are the dimension and unit of Moment of Inertia? kg>m’- ll\/l EJ

What do you think the Measure of resistance of an object to

moment of inertia is? changes in its rotational motion.

What similarity do you see between  Mass and speed in linear kinetic energy are
rotational and linear kinetic energies? replaced by moment of inertia and angular speed.

Monesday, Oct. 28, 2002 o PHYS 1443-003, Fall 2002 4
Dr. Jaehoon Yu



Example 10.4

In a system consists of four small spheres as shown in the figure, assuming the radii are
negligible and the rods connecting the particles are massless, compute the moment of
inertia and the rotational kinetic energy when the system rotates about the y-axis at w.

Q

y . . .
) Since the rotation is about y axis, the moment of
inertia about y axis, I, is
b y
| | = A mr?
0 O— | =AM = 12 4 W12 4 ms0? + msc? = 2M1
b |

q

This is because the rotation is done about y axis,

) {ihy €U Soe Use and the radii of the spheres are negligible.

1

1
Thus, the rotational kinetic energy is Kg= 5 lw? = > (2|V|| 2)N2 = Ml aw?

Find the moment of inertia and rotational kinetic energy when the system rotates on
the x-y plane about the z-axis that goes through the origin O.

| =3 M P +MP i+t =2 +mi?) KR=%IW2:%(2MI2+2mb2)/v2:(MI2+mb2)N2
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Calculation of Moments of Inertia

Moments of inertia for large objects can be computed, if we assume

the object consists of small volume elements with mass, Dm..

It is sometimes easier to compute moments of inertia in terms

of volume of the elements rather than their mass

Using the volume density, r, replace
dm in the above equation with dV.

_drr\
—dv|dm=rdv

— I o 2 -
The moment of inertia for the large rigid object is | ‘[I,L[Q)?-ﬁ DM = ¢rdn

The moments of
inertia becomes

How can we do this?

| =CrridVv

Example 10.5: Find the moment of inertia of a uniform hoop of mass M and radius R
about an axis perpendicular to the plane of the hoop and passing through its center.

y dm The moment
of inertia is

Monesday, Oct. 28, 2002 °

X What do you notice
from this result?

| =¢ridm =Re¢dm= R

The moment of inertia for this

object is the same as that of a

point of mass M at the distance R.
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Example 10.6

Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an
axis perpendicular to the rod and passing through its center ofmass.

_M

The line density of the rod is =T

y
: M
so the masslet is dm=| dx:de
dX L5 2M M ,1 L/2
W Themoment | =¢’dm=g X dx=— o
. o c = /2 :

B of inertia is L L& Hu.
Méds @lol_Ma’s ML
= —e&—+F-¢ —FU=—§G—==

3L g2y & 29§ 3LE45 12
, L
What is the moment of inertia =gy’dr= é XM o '\Ii' %X3§o
when the rotational axis Is at L
2
one end of the rod. My o :M(Ls) _ML
3L 3L 3
Will this be the same as the above. Since the moment of inertia is resistance to motion, it makes perfect sense
Why or why not? for it to be harder to move when it is rotating about the axis at one end.
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Similarity Between Linear and Rotational Motions

All physical quantities in linear and rotational motions show stiking similarity.

Similar Quantity Linear Rotational
Mass Mass M Moment of Inertia
| = ¢y *dm
Length of motion | Distance L Angle g (Radian)
Speed v =
Acceleration 2= G 2 = G
Force Force F=ma |Torque t =la
Work Work W =Q' Fa Work W =Q'tda
Power P=Fx P=tw
Momentum p=mv L=Iw
Kinetic Energy  |Kinetic * =3m* [Rotational k<=3

Monesday, Oct. 28, 2002
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Newton's Second Law & Uniform Circular Motion

m The centripetal acceleration is always perpendicular
to velocity vector, v, for uniform circular motion.

V2
’ R

Are there forces in this motion? If so, what do they do?

The force that causes the centripetal acceleration 2
acts toward the center of the circular path and o) V
causes a change in the direction of the velocity a Fr =M, =M—
vector. This force is called centripetal force. I

What do you think will happen to the ball if the string that holds the ball breaks? Why?

Based on Newton’s 1st law, since the external force no longer exist, the ball will
continue its motion without change and will fly away following the tangential

direction to the circle.
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Motion in Accelerated Frames

Newton’s laws are valid only when observations are made in an
Inertial frame of reference. What happens in a norinertial frame?

Fictitious forces are needed to apply Newton’s second law in anaccelerated frame.

This force does not exist when the observations are made in an inertial reference frame.

What does Let's consider a free ball inside a box under uniform circular motion.
this mean How does this motion look like in an inertial frame (or
%r]d tVVhy’)'S frame outside a box)?
IS true” . .
We see that the box has a radial force exerted on it but

none on the ball directly, until...

How does this motion look like in the box?

The ball is tumbled over to the wall of the box and feels
that it is getting force that pushes it toward the wall.

Why? According to Newton'’s first law, the ball wants to continue
on its original movement tangentially but since the box is
turning, the ball feels like it is being pushed toward the wall

relative to everything else in the box.
MoneSday, Oct. 28, 2002 o PHYS IO U0, T all ZUUZ TU
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Example 6.9

A ball of mass m is hung by a cord to the ceiling of a boxcar that is moving with an
accelerationa. What do the inertial observer at rest and the non-inertial observer

traveling inside the car conclude? How do they differ?
This is how the ball looks like no matter which frame you are in.

a
q —p How do the free-body diagrams look for two frames?

How do the motions interpreted in these two frames? Any differences?

For an inertial frame observer, the forces
Inertial T 4 F =m, =ma,=Tsing being exerted on the ball are only T and F,.
Frame q = - - - The acceleration of the ball is the same as
a F,=Tcosq-mg = that of the box car and is provided by the x
F =m component of the tension force.
Y fr o _m a, =gtanqg
cosS g In the non-inertial frame observer, the forces
Non-Inertial A F=F,+T+F being exerted on the ball are T, Fy, and Fy.
For some reason the ball is under a force,

Frame T q A F.=Tsng- F,.=0]F,.=ma..=Tsn
= A T e e T - F:.., that provides acceleration to the ball.
.
© yF=mg

While the mathematical expression of the
el & =gtam acceleration of the ball is identical to that of

Monesday, Oct. 28, 2002 COS@ PAYS 1223003, Fall 2002 | inertial frame observer’s, the cause of the
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Work Done by a Constant Force

Work In physics Is done only when a sum of forces
exerted on an object made a motion to the object.

YT-
F Fn

Free Body
Diagram >

| d -

TI!

Which force did the work? Force E

N-m

How much work did it do? [W=g& F>d =Fdcosy| Unit?z |1 e

Physical work is done only by the component of of

' 2
What does this mean’ the force along the movement of the object.
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Kinetic Energy and Work-Kinetic Energy Theorem

« Some problems are hard to solve using Newton’s second law
— If forces exerting on the object during the motion are so complicated
— Relate the work done on the object by the net force to the change of the
speed of the object

Suppose net force SF was exerted on an object for
displacement d to increase its speed fromv; to V.

The work on the object by the net force SF is
W = (é E)Xa = (ma)d cos0 = (ma)d

1 , V. - V.
o= g(vf +v )t Acceleration  |a=——
¢ & -vigul 1 1 | Kinetic 1
Work |W={ma)d =g =V vt ==mv; - =mv KE==mV
(re) S % mZ(f ) 2" 2| Energy 2

1 1 The work done by the net force caused
W==mv?- =my¢ =KE, - KE =DKE y
Work o T o 7 o KE change of the object’s kinetic energy.
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Example 7.8

A 6.0kg block initially at rest is pulled to East along a horizontal surface with coefficient
of kinetic friction m=0.15 by a constant horizontal force of 12N. Find the speed ofthe
block after it has moved 3.0m.

M Work done by the force F is

= 7 » [W.=Fxd :‘EHH‘ cosq =12 3.0cos0=36(J)

|
: d:3.0m>I W, = F, xd = |m,mg ”a‘cosq
Work done by friction F, is

=0.15" 6.0" 9.8" 3.0c0s180 = - 26(J)
Thus the total work is | [W =W +W =36- 26 =10(J)

Using work-kinetic energy theorem and the fact that initial speed is 0, weobtain

for v¢, we obtain m 6.0

W =W, +V\/k:%mvf Solving the ewaﬂ% v :\/Z\N :JZ 10 —1.8m/s
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Work and Kinetic Energy

Work In physics Is done only when a sum of forces
exerted on an object made a motion to the object.

What does this mean?

However much tired your arms feel, if you were
just holding an object without moving it you have

not done any physical work.

Mathematically, work is written in scalar product W= é E.>d =Fd 0o

of force vector and the displacement vector

Kinetic Energy is the energy associated with motion and capacity to perform work. Work
requires change of energy after the completion€= Work-Kinetic energy theorem

2

K =L my? éW:K]c . Ki = DK | | Nm=Joule

Monesday, Oct. 28, 2002
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Power

+ Rate at which work Is done

— What is the difference for the same car with two different engines (4
cylinder and 8 cylinder) climbing the same hill? =» 8 cylinder car climbs
up faster

s the amount of work done by the engines different? NO

Then what is different?  The rate at which the same amount of work
performed is higher for 8 cylinder than 4.

Average power |p = \L’]V—t

Instantaneous power‘pu P A FxC5)= F v = Fv cosc
Dt®0 Dt dt

Unit? [J/s=Wattd[1HP = 746Watts\

What do power companies sell? |[IKWH = 1000Watts ~ 3600s = 3.6~ 10°J

Monesday, Oct. 28, 2002
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Gravitational Potential Energy

Potential energy given to an object by gravitational field
In the system of Earth due to its height from the surface

When an object is falling, gravitational force, My, performs work on the
object, increasing its kinetic energy. The potential energy ofan object at a
height y which is the potential to work is expressed as

U, :Eg@“=m(- T)xy( T) — Moy U, ° mgy

Work performed on the object | W, =U, - U
by the gravitational force as the | ———=

Y, brick goes fromy.to y; is: =mgy - mgy; =- DU,

What does Work by the gravitational force as the brick goes fromy.to y,
P S - this mean? || is negative of the change in the system’s potential energy

=>» Potential energy was lost in order for gravitational
Monesday, Oct. 28, 2002 force to increase the brick’s kinetic energy.
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Example 8.1

A bowler drops bowling ball of mass 7kg on his toe. Choosing floor level as y=0, estimate the
total work done on the ball by the gravitational force as the ball falls.

‘fl Let's assume the top of the toe is 0.03m from the floor and the hand
\\){;@/} was 0.5m above the floor.
0 4 U =mgy =7 9.8 05=343]||U, =mgy, =7 9.8" 0.03=2.06J

@i@\\!‘ DU =-{U,-U,)=32.24] @30J

b) Perform the same calculation using the top of the bowler's head as the origin.

What has to change? | | First we must re-compute the positions of ball at the hand and of the toe.

Assuming the bowler’s height is 1.8m, the ball's original position is =1.3m, and the toe is at—1.77m.

U =mgy =7 98 (-1.3)=-89.23 |[U, =mgy, =7" 98" (- 1.77) =- 1214J

DU =-(U,-U,)=32.2] @30
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Elastic Potential Energy

Potential energy given to an object by a spring or an object with elasticity
In the system consists of the object and the spring without friction.

The force spring exerts on an object when it is E = - kx
distorted from its equilibrium by a distance x Is S

The work performed on the
object by the spring Is

N

W, = ) o[ Sy 1= 518 +r[=5F - 5

The potential energy of this system is u.°

=

kXZ

2

What do you see from
the above equations?

The work done on the object by the spring depends only on
the initial and final position of the distorted spring.

Where else did you see this trend? The gravitational potential energy, U,

So what does this tell you about the elastic force? || A conservative force!!!
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Conservative and Non-conservative Forces

The work done on an object by the gravitational
force does not depend on the object’s path.

N
When directly falls, the work done on the objectis | [W, = mgh
h | When sliding down the hill  {[Ws = Fy.ingiee  I||= Mg sing " |
mq q of length [, the work is W, = mg(l qu) = mgh
How about if we lengthen the incline by a Still the same W. =mgh
factor of 2, keeping the height the same?? amount of work©

So the work done by the gravitational force on an object is indgendent on the path of
the object’s movements. It only depends on the difference of the object’s initial and final
position in the direction of the force.

The forces like gravitational 1. If the work performed by the force does not depend on the path
or elastic forces are called 2. If the work performed on a closed path is O.
conservative forces

rrirro L5599°VUV0, I'dil £2UUZ

| Total mechanical energy is conserved!! “EM °KE+PE = KE +PE
Monesday, Oct. 28, 2002
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Conservation of Mechanical Energy
Total mechanical energy is the sum of kinetic and potential enegies ||E©° K +U

Let's consider a brick What is its potential energy?
of mass m at a height . .
h from the ground Ug - mgr

What happens to the energy as _ X
the brick falls to the ground? | [P =Y ~ Ui =- 0 Fax

The brick gains speed By how much? v =gt

1 1,
So what? || The brick’s kinetic energy increased | |K =§m\f = mgt

hT—M The lost potential energy converted to kinetic energy

h,

The total mechanical energy of a system remains _
What does constant in any isolated system of objects that =k

this mean? Interacts only through conservative forces: K +éu =K, + éuf
" . . |
Principle of mechanical energy conservation

Monesday, Oct. 28,
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Example 8.2

A ball of mass m is dropped from a heighth above the ground. Neglecting air resistance
determine the speed of the ball when it is at a heighty above the ground.

PE KE Using the K'l'u :Kr -|-Uf 0+mgh|= 1 mv2 + mgy
ﬂ mgh 0 mv22 principle of 2
mg mechanical |1, _
" energy ;v = mg(h- y)
conservation
— @) my m2 mvi2 v=,2gh- y

‘ b) D '
y time of release at the original heighth.

etermine the speed of the ball aty if it had initial speed v, at the

Again using the KI +U- :K +U
0 principle of mechanical

oaisssslessssssn—"" ]
energy conservation 4 mv2 + mgh|=
but with non-zero initial 2

kinetic energy!!!

This result look very similar to a kinematic
expression, doesn't it? Which one is it?

Monesday, Oct. 28, 2002 =% PHYS 1443-003, Fal 2007
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@ Example 8.3

A ball of mass m is attached to a light cord of length L, making up a pendulum. The ball is
released from rest when the cord makes an angle g, with the vertical, and the pivoting point
P is frictionless. Find the speed of the ball when it is at the lowest point, B.

h)[L- Leos, =L(1- cox,,)

U mgr“—mgL(l- cosy,) |

K +U =K +U,

Compute the potential energy
at the maximum height, h.

Remember where the 0 is.

Using the principle of
mechanical energy 0+ mgh =|mgL (1- cosq A) — |12

conservation 2

mv2/2

b) Determine tension T at the point B. |

v =2gL(1- cosq,) |\ v=y/2gL{1- cosy,)

|° E —“T _| | v® || V?
Using Newton’s 2" [aw ar = - Mg =jjma, ={jm—= mT

of motion and recalling
the centripetal
acceleration of a circular
motion

Cross check the result in

29L (1- cos 5| | asimple situation. What
= m§g+ gl ( T ) 9 happens when the initial
e

9] | angle q,is0? T = mg

- mgL+2gL(L1' 0S0.) \ T=mg3- 2cogj,)

Monesday, Oct. 28, 200 4 Fall 2002 23
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Work Done by Non-conserve Forces

Mechanical energy of a system is not conserved when any one
of the forces in the system is a non-conservative force.

Two kinds of non-conservative forces:

Applied forces: Forces that are external to the system. These forces can
take away or add energy to the system. So themechanical energy of the

system is no longer conserved.

I you were to carry around a ball, the force you apply to the W, +W =DK; W =- U
ball is external to the system of ball and the Earth. SW K40
Therefore, you add kinetic energy to the balkEarth system. Wou = W™

Kinetic Friction: Internal non-conservative
force that causes irreversible transformation of Whiction Kiion~ fkd

energy. The friction force causes the kinetic and [E=E - E =[K+DU=-fd
potential energy to transfer to internal energy

Monesday, Oct. 28, 2002 * PHYS 1443-003, Fall 2002 24
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Example 8.6

A skier starts from rest at the top of frictionless hill whose vertical height is 20.0m and the
inclination angle is 20°. Determine how far the skier can get on the snow at the bottom of the
hill with a coefficient of kinetic friction between the ski andthe snow is 0.210.

~ 21
o Compute t.he speed at the_ bottom of ME =mgh —Em\/z
. to know mass? the hill, using the mechanical energy
~ & conservation on the hill before friction v=,2gh
- starts working at the bottom V=2 98 200-198m/s
q—20‘{ The change of kinetic energy is the same as the work done by kiretic friction.

before stopping, the friction must do as much work as the
DK =K, - K;=-1.d available kinetic energy.

SinceK,; =0 | |- K =-fd, fd=K

f, = r'II
m< m.mg What does this mean?

Iea—— ‘&‘%Zm No matter how h the skier is he will get
T 2”!(9 2" 0210 9.80 0 matter now neavy tne SKIer IS ne will get as

far as anyone else has gotten.

Well, it turns out we don’t need to know mass.

I\.)|I—‘

Monesday, Oct. 28, 2002 e PHYS 1443-003, Fall 2002 25
Dr. Jaehoon Yu



General Energy Conservation and
Mass-Energy Equivalence

General Principle of | The total energy of an isolated system is conserved as
Energy Conservation | long as all forms of energy are taken into account.

Friction is a non-conservative force and causes mechanical

—
What about friction’ energy to change to other forms of energy.

However, if you add the new form of energy altogether the systemas a
whole did not lose any energy, as long as it is self-contained or isolated.

In the grand scale of the universe, no energy can be destroyed ar
created but just transformed or transferred from one place to another.
Total energy of universe is constant.

Principle of In any physical or chemical process, mass is neither created nordestroyed.
Conservation of Mass  Mass before a process is identical to the mass after the process
Einstein’s Mass- 2 :
: = How many joules does your body correspond to?
Energy equality. ER mc Y] y y P
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Linear Momentum and Forces

—_

— dp_d ( ») What can we learn from this
F = = mv L
dt dt Force-momentum relationship?

«  The rate of the change of particle’s momentum is the same as
the net force exerted on it.

«  When net force is 0, the particle’s linear momentum is
constant.

« [faparticle is isolated, the particle experiences no net force,
therefore its momentum does not change and is conserved.

Something else we can do The relationship can be used to study
with this relationship. What the case where the mass changes as a
do you think it is? function of time.

Can you think of a Motion of a meteorite Trajectory a satellite

few cases like this?
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Conservation of Linear Momentum in a Two
Particle System

Consider a system with two particles that does not have any external
forces exerting on it. What is the impact of Newton’s 39 Law?

If particle#1 exerts force on particle #2, there must be another force that
the particle #2 exerts on #1 as the reaction force. Both the forces are
internal forces and the net force in the SYSTEM is still 0.

Now how would the momenta Let say that the particle #1 has momentum

of these particles look like? p, and #2 has p, at some point of time.
Using momentum- . _dp, . _dp,
force relationship Fa="5 and  |F Tdt

And since net force 6 = — = dfo dTOl _d(ﬁ _,) ~
of this system is 0 a F =Fo+Fa = dt2+ G dt p,+p) =0

Therefore _p' + B = const | The total linear momentum of the system is conserved!!!
2 1
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Impulse and Linear Momentum

Net force causes change of momentum =>» — dp
Newton’s second law i

ldp =Fat|

By integrating the above G

equationinatime intervaltjto | Qdp=p; - p, = Dp:Q Fdt O Fdt= Dp‘
t,, one can obtain impulse I. | |
Impulse of the force F acting on a particle over the time

interval Dt=t.-t; is equal to the change of the momentum of
the particle caused by that force. Impulse is the degree of

which an external force changes momentum.

So what do you
think an impulse is?

The above statement is called the impulsemomentum theorem and is equivalent to Newton’s second law

|
|

What are the Defining a time-averaged force Impulse can be rewritten || If force is constant
dimension and

unit of Impulse? = o 1 i _,d - p— - N

What is the FOoO_—_ A Fdt 0 0

direction of an Dt Q I F Dt I F Dt

impulse vector?
Monesday, Oct. 28, 2002

It is generally approximated that the impulse force exerted acts
on a short time but much greater than any other forces present.
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Example 9.5

A car of mass 1800kg stopped at a traffic light is rear-ended by a 900kg car, and
the two become entangled. If the lighter car was moving at 20.0m/s before the
collision what is the velocity of the entangled cars after the collision?

Before collision The momenta before and after the collision are

y }@ P |: My Vai + M,V2 |: 0+ M,Vz
@ 0.0m/s —
: Ps|=MVie +M,Vor :(ml+m2)vf

Since momentum of the system must be conserved

(TN P = Py :> (”1+”12):/f|:W12</2i

1 (m, +m, ) || 900 +1800

After collision

=6.67i m/ s

What can we learn from these equations  The cars are moving in the same direction as the lighter
on the direction and magnitude of the car’s original direction to conserve momentum.

velocity before and after the collision? The magnitude is inversely proportional to its own mass.
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Elastic and Perfectly Inelastic Collisions

In perfectly Inelastic collisions, the objects stick
together after the collision, moving together.
Momentum is conserved in this collision, so the

final velocity of the stuck system is

How about elastic collisions? |n1§/ﬂ + mjm I=rq;/1f +n}§/2f |
- o 1 1 1 1
In elastic collisions, bpth_the ‘E my2 +Emz\,§i |:§mlvff +§mzv§f
momentum and the Kinetic energy
are conserved. Therefore, the m, (V2 - vff) = mz(vf. - v§f)
final speeds. Inan elastic coI_Ils_lc_)n my (v - vy vy v ) = mulv - vy Jlvs + vy, )
can be obtained in terms of initial
From momentum |rqv V. v v )l
Speeds as conservation abo ” —
-m,0 &2m, 0 & 2m 0 m, O
Vit g Vg t N | Vor = Vit g :V
m +m, g m, +m, g m, +m, g m, +m, g
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Example 9.9

Proton #1 with a speed 3.50x10° m/s collides elastically with proton #2 initially at
rest. After the collision, proton #1 moves at an angle of 37 to the horizontal axis
and proton #2 deflects at an anglef to the same axis. Find the final speeds of the

two protons and the scattering angle of proton #2,f .

@ Vp Since both the particles are protons m;=m,=m,.
@ Using momentum conservation, one obtains
N g x-comp. MyVy; =MV, cosq + MV, cosf
</’®/vq ______________ y-comp. MyVi¢ SNQ - MV, sinf =0
N Canceling m, and put in all known quantities, one obtains
@,/2\A |v1f cos37° +V,, cosf =3.50" 10° (1)|
"
From kinetic energy |V1f sin37° =v,; sinf  (2) |
conservation: .
) . Solving Egs. 1-3 Do this at
|(3-50 16°) =2 +2, (3)|equations, one gets home®
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Example 9.9

A 1500kg car traveling east with a speed of 25.0 m/s collides atan interaction with a 2500kg
van traveling north at a speed of 20.0 m/s. After the collision the two cars stuck to each
other, and the wreckage is moving together. Determine the veloaty of the wreckage after the
collision, assuming the vehicles underwent a perfectly inelastic collision.

ﬂ Vi The initial momentum of the two car system before the collisionis

P, =MV, i +myV, j =1500" 25.0 +2500" 20.0]

z : =
=3.75" 10* +5.0" 10" |
“/‘xy The final momentum of the two car system after the perfectly
% inelastic collision is
p, =(m + mz)(vfxi +Vy, j) =4.0" 10°v,i +4.0" 10°v |
s aq4
Using X-como. P« = P + =mv,, +0] v :(rqle+0)= 375 10 =9.38m/s
momentum p [P = Pu] [+ =, +0f v, m+m, 1500+ 2500
conservation A
vfy=(o+ M) 8010 1) gy
m+m, 1500+ 2500

—e Y-comp.Ipfy = piy”(”l"'mz)vfyzO"'szZyl
|pf = pil

Vi =Vin+nyj:(9.38i+12.5j /s
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Center of Mass
We’ve been solving physical problems treating objects as sizeless

points with masses, but in realistic situation objects have shapes
with masses distributed throughout the body.

Center of mass of a system is the average position of the system's mass and
represents the motion of the system as if all the mass is on the point.

What does above The total external force exerted on the system of
statement tell you total mass M causes the center of mass to move at
an acceleration givenby a=§ F /M asifall

concerning forces beln?g the mass of the system is concentrated on the
exerted on the system’ center of mass.

Consider a massless rod with two balls attached at either end.

The position of the center of mass of this system is

the mass averaged position of the system

o MX +myX, | CMis closer to the
m, +m, heavier object
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Center of Mass of a Rigid Object

The formula for CM can be expanded to Rigid Object or a
system of many particles

o] o] o]
m: V. m. zZ
_mx +mp eeemy, 2 _any _anms
Xem = -9 Yo = 3 Zem =70
M+ M), +2¢H1T), am a m a m
i i i
The position vector of the Fow = Xay |+ You |+ Zoq k _d MXT+d myi+d mak
center of mass of a many 2 mr G
particle system is Fow = —
M
A é_ Dm; x;
A rigid body — an object with shape Xow » =
and size with mass spread throughout s
fi the body, ordinary objects — can be - a bmpgg, .
Fom considered as a group of particles with Xem = D';,{go ' M VOde
» | mass m, densely spread throughout
the given shape of the object - 1 -
_ Few =— cydm
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Example 9.12

A system consists of three particles as shown in the figure. Fnd the
position of the center of mass of this system.

Using the formula for CM for each
y=2@® 02 position vector component
0.75,4 a mx amy,
e Xem = Ié m You = Ié m
10)  (20) | i
@ > -
= = e T : = +2m,)1 +2
=l 2 Oneobtains e, =Y 1+ Yo | =(n} 2m)i+2m |
: m+m,+m
_AMN mx +m +mx, _ m,+2m,
XeMT8m T mrmem  m+m+m It|m = 2kg; m, =m, =1kg
— aitmyi _My, tmy,tmy; _ 2m FCM _ 3 +4] — 075; _I__J:
am  mEm+m meEm+m,

Mon€esuay, wer. 23, 2002 a PHYS 1443-003, Fall 2002 T
Dr. Jaehoon Yu



Example 9.13

Show that the center of mass of a rod of massM and length L lies in midway
between its ends, assuming the rod has a uniform mass per unit length.
A L The formula for CM of a continuous object is
< _ 1 x=L d
XCM _VQ:O xam
o » Since the density of the rod (I ) is constant: | =M /L
dm=I dx  The mass of a small segment |{dm=1 dx
1 et 16, ,u° _1a8 ,6_1lad,, 6 L
Therefore =—q Ixdx=—2Ix, =—clLli=—cML:==
Xem M Qo M& l\/ng g Mgé g 2
Find the CM when the density of the rod non-uniform but varies linearly as a function of x,| =a x
_ =L _ \X:L . . i X=L
M = Q! dx = Q. axdx X =ié<_L| < =i6_LaX2dX 1 gia sU
, X=L M =0 M =0 83 HX:O
= elang =—a |_2 c
82 HX:O 2 XCM :ié_al_gg :ig_ MLQ:&
: e3 g Mé3 g 3 a7
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Fundamentals on Rotation

Linear motions can be described as the motion of the center of
mass with all the mass of the object concentrated on it.

Is this still true for No, because different parts of the object have
rotational motions? different linear velocities and accelerations.

Consider a motion of a rigid body — an object that
does not change its shape — rotating about the axis

protruding out of the slide.
The arc length, or sergita, is s = rq

Therefore the angle, g, is g = ri And the unit of
the angle is in radian.

One radian is the angle swept by an arc length equal to the radius of the arc.

Since the circumference of a circle Is 2pr,  360° =2pr/r =2p

The relationship between radian and degrees is 1rad = 360° / 2p =180° /p
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