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PHYS 1443 – Section 003
Lecture #14
Monday, Nov. 4, 2002

Dr. Jaehoon Yu

1. Parallel Axis Theorem
2. Torque
3. Torque & Angular Acceleration 
4. Work, Power and Energy in Rotation

Today’s homework is homework #14 due 12:00pm, Monday, Nov. 11!!
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Announcements
• 2nd Term Exam

– Grading is completed
• Maximum Score: 87
• Numerical Average: 58.1
• Four persons missed the exam without a prior approval

– Can look at your exam after the class
– All scores are relative based on the curve

• One worst after the adjustment will be dropped

– Exam constitutes only 50% of the total
• Do your homework well
• Come to the class and do well with quizzes 
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2nd Term Exam Distributions

Mean: 58

Mean: 51

14% Improvement
A lot narrower distribution. è Even 
improvements
But as always, you could do better!!!
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Calculation of Moments of Inertia
Moments of inertia for large objects can be computed, if we assume 
the object consists of small volume elements with mass, ∆mi.

It is sometimes easier to compute moments of inertia in terms 
of volume of the elements rather than their mass

Using the volume density, ρ, replace 
dm in the above equation with dV.

The moment of inertia for the large rigid object is

How can we do this?

∑ ∆=
→∆ i

iim
mrI

i

2

0
lim ∫= dmr2

dV
dm=ρ The moments of 

inertia becomes ∫= dVrI 2ρ

Example 10.5: Find the moment of inertia of a uniform hoop of mass M and radius R 
about an axis perpendicular to the plane of the hoop and passing through its center.

x

y

RO

dm The moment 
of inertia is ∫= dmrI 2

What do you notice 
from this result?

The moment of inertia for this 
object is the same as that of a 
point of mass M at the distance R.

∫= dmR2 2MR=

dVdm ρ=



Monday, Nov. 4, 2002 PHYS 1443-003, Fall 2002
Dr. Jaehoon Yu

5

x

y

(x,y)

xCM

(xCM,yCM)

y CM

CM

Parallel Axis Theorem
Moments of inertia for highly symmetric object is easy to compute if the 
rotational axis is the same as the axis of symmetry.  However if the axis of 
rotation does not coincide with axis of symmetry, the calculation can still be 
done in simple manner using parallel-axis theorem. 2MDII CM +=

y

x

r

Moment of inertia is defined ∫= dmrI 2

Since x and y are

x’

y’

'xxx CM +=

One can substitute x and y in Eq. 1 to obtain

( ) ( )[ ]∫ +++= dmyyxxI CMCM
22 ''

Since the x’ and y’ are the 
distance from CM, by definition ∫ = 0' dmx

D

Therefore, the parallel-axis theorem

CMIMD += 2

What does this 
theorem tell you?

Moment of inertia of any object about any arbitrary axis are thesame as 
the sum of moment of inertia for a rotation about the CM and that of the 
CM about the rotation axis.

( ) (1)   22∫ += dmyx

'yyy CM +=

( ) ( )dmyxdmyydmxxdmyx CMCMCMCM ∫∫∫∫ +++++= 2222 '''2'2

∫ = 0' dmy

( ) ( )dmyxdmyxI CMCM ∫∫ +++= 2222 ''
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Example 10.8
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis that goes through one end of the rod, using parallel-axis theorem.

The line density of the rod is  

Using the parallel axis theorem

L
M

=λ

so the masslet is  dx
L
M

dxdm == λ

The moment of 
inertia about 
the CM 

CMI

MDII CM
2+=

The result is the same as using the definition of moment of inertia.
Parallel-axis theorem is useful to compute moment of inertia of a rotation of a rigid 
object with complicated shape about an arbitrary axis

x

y

L
x

dxCM

MLML 22

212






+=

∫= dmr 2 dx
L
MxL

L∫−
=

2/

2/

2 2/

2/

3

3
1 L

L

x
L
M

−




=


















 −−






=

33

223
LL

L
M

1243

23 MLL
L

M
=





=

3412

222 MLMLML
=+=
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Torque
Torque is the tendency of a force to rotate an object about an axis.  
Torque, τ, is a vector quantity.

FdrF =≡ φτ sinMagnitude of torque is defined as the product of the force 
exerted on the object to rotate it and the moment arm.

F
φ

d

Line of 
Action

Consider an object pivoting about the point P
by the force F being exerted at a distance r. 

P

r

Moment 
arm

The line that extends out of the tail of the force 
vector is called the line of action.
The perpendicular distance from the pivoting point 
P to the line of action is called Moment arm.

When there are more than one force being exerted on certain 
points of the object, one can sum up the torque generated by each 
force vectorially.  The convention for sign of the torque is positive if 
rotation is in counter-clockwise and negative if clockwise. 

d2

F2

21 τττ +=∑
22dFFd −=
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R1

Example 10.9
A one piece cylinder is shaped as in the figure with core section protruding from the 
larger drum.  The cylinder is free to rotate around the central axis shown in the picture.   
A rope wrapped around the drum whose radius is R1 exerts force F1 to the right on the 
cylinder, and another force exerts F2 on the core whose radius is R2 downward on the 
cylinder.  A) What is the net torque acting on the cylinder about the rotation axis?

The torque due to F1 111 FR−=τ

Suppose F1=5.0 N, R1=1.0 m, F2= 15.0 N, and R2=0.50 m.  What is the net torque 
about the rotation axis and which way does the cylinder rotate from the rest?

R2

F1

F2

and due to F2 222 FR=τ

Using the 
above result

221121 FRFR +−=+=∑ τττSo the total torque acting on 
the system by the forces is

mN

FRFR

•=×+×−=

+−=∑
5.250.00.150.10.5

2211τ The cylinder rotates in 
counter-clockwise.
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Torque & Angular Acceleration
Let’s consider a point object with mass m rotating on a circle.

What does this mean?

The tangential force Ft and radial force Fr

The tangential force Ft is

What do you see from the above relationship?

m
r

Ft

Fr

What forces do you see in this motion?

tt maF =

The torque due to tangential force Ft is rFt=τ

ατ I=
Torque acting on a particle is proportional to the angular acceleration.

What law do you see from this relationship? Analogs to Newton’s 2nd law of motion in rotation.

How about a rigid object?

r

dFt

dm

O

The external tangential force dFt is αdmrdmadF tt ==

αατ Idmr == ∫∑ 2

The torque due to tangential force Ft is
The total torque is

( )ατ dmrrdFd t
2==

What is the contribution due 
to radial force and why?

Contribution from radial force is 0, because its 
line of action passes through the pivoting 
point, making the moment arm 0.

αmr=

rmat= α2mr=
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Example 10.10
A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is 
free to rotate about the pivot in the vertical plane.  The rod is released from rest in the 
horizontal position. What are the initial angular acceleration of the rod and the initial linear 
acceleration of its right end?

The only force generating torque is the gravitational force Mg

τ

Using the relationship between tangential and 
angular acceleration

∫=
L

dmrI
0

2Since the moment of inertia of the rod 
when it rotates about one end

L/2

Mg

We obtain 

α
ta

What does this mean?

The tip of the rod falls faster than 
an object undergoing a free fall.

Fd=
2
L

F=
2
L

Mg= αI=

∫=
L

dxx
0

2λ
L

x
L
M

0

3

3 













=

3

2ML=

I
MgL
2

=

3
2 2ML
MgL

=
L
g

2
3

= αL=
2

3g
=
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Work, Power, and Energy in Rotation
Let’s consider a motion of a rigid body with a single external 
force F exerting on the point P, moving the object by ds.
The work done by the force F as the object rotates 
through the infinitesimal distance ds=rdθ is 

What is Fsinφ? The tangential component of force F.

dW

Since the magnitude of torque is rFsinφ,

F
φ

O

rdθ
ds

What is the work done by 
radial component Fcosφ?

Zero, because it is perpendicular to the 
displacement.

dW

The rate of work, or power becomes P How was the power 
defined in linear motion?

The rotational work done by an external force 
equals the change in rotational energy. ∑τ

The work put in by the external force then dW

sdF ⋅= ( ) θφ rdF sin=

θτd=

dt
dW

=
dt
dθτ= τω=

αI= 





=

dt
d

I
ω















=

dt
d

d
d

I
θ

θ
ω

θτd∑= ωωdI=

W ∫ ∑= f d
θ

θι

θτ ∫= f dI
ω

ωι

ωω 22

2
1

2
1

if II ωω −=
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Similarity Between Linear and Rotational Motions
All physical quantities in linear and rotational motions show striking similarity.

Momentum
RotationalKineticKinetic Energy

Power
WorkWorkWork
TorqueForceForce

Acceleration
Speed

Angle     (Radian)DistanceLength of motion

Moment of InertiaMassMass
RotationalLinearSimilar Quantity

∫= dmrI 2

dt
dr

v =
dt
d θ

ω =

dt
dv

a =
dt
dω

α =

maF = ατ I=
∫=

f

i

x

x
FdxW

vFP ⋅= τω=P

2

2
1

mvK = 2

2
1

ωIK R =

L

M

θ

∫=
f

i

dW
θ

θ
θτ

vmp = ωIL =


