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PHYS 1443 – Section 003
Lecture #15

Wednesday, Nov. 6, 2002
Dr. Jaehoon Yu

1. Rolling Motion of a Rigid Body
2. Total Kinetic Energy of a Rolling Rigid Body 
3. Kinetic Energy of a Rolling Sphere
4. Torque and Vector Product
5. Properties of Vector Product
6. Angular Momentum

Today’s homework is homework #15 due 12:00pm, Wednesday, Nov. 13!!
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Similarity Between Linear and Rotational Motions
All physical quantities in linear and rotational motions show striking similarity.
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Rolling Motion of a Rigid Body
What is a rolling motion?

To simplify the discussion, let’s 
make a few assumptions

Let’s consider a cylinder rolling without slipping on a flat surface

A more generalized case of a motion where the 
rotational axis moves together with the object

Under what condition does this “Pure Rolling” happen?

The total linear distance the CM of the cylinder moved is

Thus the linear 
speed of the CM is

A rotational motion about the moving axis

1. Limit our discussion on very symmetric 
objects, such as cylinders, spheres, etc

2. The object rolls on a flat surface

R θ s

s=Rθ

θRs=

dt
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vCM =

Condition for “Pure Rolling”
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d
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More Rolling Motion of a Rigid Body

As we learned in the rotational motion, all points in a rigid body 
moves at the same angular speed but at a different linear speed.

At any given time the point that comes to P has 0 linear 
speed while the point at P’ has twice the speed of CM

The magnitude of the linear acceleration of the CM is

A rolling motion can be interpreted as the sum of Translation and Rotation

CMa

Why??
P

P’

CM
vCM

2vCM

CM is moving at  the same speed at all times.
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Total Kinetic Energy of a Rolling Body

Where, IP, is the moment of 
inertia about the point P.

Since it is a rotational motion about the point 
P, we can writ the total kinetic energy

Since vCM=Rω, the above 
relationship can be rewritten as

2

2
1

ωPIK =

What do you think the total kinetic 
energy of the rolling cylinder is?

P
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Using the parallel axis theorem, we can rewrite

K
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2
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2
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CMCM MvIK += ω

What does this equation mean? Rotational kinetic 
energy about the CM

Translational Kinetic 
energy of the CM

Total kinetic energy of a rolling motion is the sum 
of the rotational kinetic energy about the CM And the translational

kinetic of the CM
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Kinetic Energy of a Rolling Sphere

Since vCM=Rω

Let’s consider a sphere with radius R 
rolling down a hill without slipping.
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Since the kinetic energy at the bottom of the hill must 
be equal to the potential energy at the top of the hill

What is the speed of the 
CM in terms of known 
quantities and how do you 
find this out?
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Example 11.1
For solid sphere as shown in the figure, calculate the linear speed of the CM at the 
bottom of the hill and the magnitude of linear acceleration of the CM.

22

5
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MRdmrICM == ∫

The moment of inertia the 
sphere with respect to the CM!!

Since h=xsinθ, 
one obtains

Thus using the formula in the previous slide

What must we know first?R
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102 gxvCM = Using kinematic
relationship
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The linear acceleration 
of the CM is θsin
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What do you see?

Linear acceleration of a sphere does 
not depend on anything but g and θ.
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Example 11.2
For solid sphere as shown in the figure, calculate the linear speed of the CM at the 
bottom of the hill and the magnitude of linear acceleration of the CM.  Solve this problem 
using Newton’s second law, the dynamic method.

∑ xF

Gravitational Force,

Since the forces Mg and n go through the CM, their moment arm is 0 
and do not contribute to torque, while the static friction f causes torque

M
xh

θ

αRaCM =

CMτ

We know that  

What are the forces involved in this motion?

Mg

f

Newton’s second law applied to the CM gives
Frictional Force, Normal Force

n
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Torque and Vector Product

The magnitude of torque given to the disk by the force F is

Let’s consider a disk fixed onto the origin O and 
the force F exerts on the point p. What happens?

φτ sinFr=

BAC ×≡

The disk will start rotating counter clockwise about the Z axis

The above quantity is called 
Vector product or Cross product

Fθ

τ=rxF

r p

But torque is a vector quantity, what is the direction? 
How is torque expressed mathematically? Fr ×≡τ
What is the direction? The direction of the torque follows the right-hand rule!!

What is the result of a vector product?
Another vector

What is another vector operation we’ve learned?

Scalar product θcosBABAC =⋅≡

Result? A scalar

θsinBABAC =×=
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Properties of Vector Product

( )
dt

BAd ×

Vector Product is Non-commutative What does this mean?

If the order of operation changes the result changes ABBA ×≠×

ABBA ×−=×
Following the right-hand rule, the direction changes

Vector Product of two parallel vectors is 0.

BAC ×= 0=×AAThus,

If two vectors are perpendicular to each other

BA×

Vector product follows distribution law

( )CBA +×
The derivative of a Vector product with respect to a scalar variable is 

θsinBA= 00sin == BA

θsinBA= o90sinBA= ABBA ==

CABA ×+×=

dt
Bd

AB
dt

Ad
×+×=
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More Properties of Vector Product
The relationship between 
unit vectors, kji  and  ,

kkjjii ×=×=×

=× BA

Vector product of two vectors can be expressed in the following determinant form 

0=

ji × ij ×−= k=

kj × jk ×−= i=

ik × ki ×−= j=

zyx

zyx

BBB

AAA

kji

zy

zy

BB
AA

i=
zx

zx

BB
AA

j−
yx

yx

BB
AA

k+

( ) iBABA yzzy  −= ( ) jBABA xzzx −− ( )kBABA xyyx −+



Wednesday, Nov. 6, 2002 PHYS 1443-003, Fall 2002
Dr. Jaehoon Yu

12

Example 11.3
Two vectors lying in the xy plane are given by the equations A=2i+3j and 
B=-i+2j, verify that AxB= -BxA

BA×

Since 
(2,3)(-1,2)

AB
kji =×

BA×

AB ×

Using the same unit vector relationship as above 

AB ×
Therefore, AxB= -BxA

Now prove this using determinant method

( ) ( )jiji 232 +−×+= ijji ×−×= 34

( )ijk −×+= 34 kkk 734 =+=

( ) ( )jiji 322 +×+−= ijji ×+×−= 43

kkk 743 −=−−=


