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PHYS 1443 – Section 003
Lecture #20
Monday, Nov. 25, 2002

Dr. Jaehoon Yu

1. Simple Harmonic and Uniform Circular Motions
2. Damped Oscillation
3. Newton’s Law of Universal Gravitation
4. Free Fall Acceleration and Gravitational Force
5. Kepler’s Laws
6. Gravitation Field and Potential Energy

Today’s homework is homework #20 due 12:00pm, Monday, Dec. 2!!
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Announcements
• Class on Wednesday
• Remember the Term Exam on Monday, Dec. 9 in the 

class
– Covers chapters 11 – 15
– Review on Wednesday, Dec. 4
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Simple Harmonic and Uniform Circular Motions
Uniform circular motion can be understood as a 
superposition of two simple harmonic motions in x and y axis.

When the particle rotates at a uniform angular 
speed ω, x and y coordinate position become

Since the linear velocity in a uniform circular 
motion is Aω, the velocity components are
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Since the radial acceleration in a uniform circular 
motion is v2/A=ω2Α, the components are

xa

θcosA= ( )φω += tA cos
y θsinA= ( )φω += tA sin

θsinv−= ( )φωω +−= tA sin

yv θcosv+= ( )φωω += tA cos

θcosa−= ( )φωω +−= tA cos2

ya θsina−= ( )φωω +−= tA sin2
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Example 13.7
A particle rotates counterclockwise in a circle of radius 3.00m with a constant angular 
speed of 8.00 rad/s.  At t=0, the particle has an x coordinate of 2.00m and is moving to 
the right.   A) Determine the x coordinate as a function of time.

Since the radius is 3.00m, the amplitude of oscillation in x direction is 3.00m.  And the 
angular frequency is 8.00rad/s.  Therefore the equation of motion in x direction is

Since x=2.00, when t=0

However, since the particle was 
moving to the right φ=-48.2o, 

Using the 
displacement

x

( ) φcos00.300.2 m=

( ) ( )o2.4800.8cos00.3 −= tmx

Find the x components of the particle’s velocity and acceleration at any time t.

xv

Likewise, 
from velocity xa

θcosA= ( ) ( )φ+= tm 00.8cos00.3

o2.48
00.3
00.2cos 1 =






= −φ

dt
dx= ( ) ( ) ( ) ( )o2.4800.8sin/0.242.4800.8sin00.800.3 −−=−⋅−= tsmt

dt
dv= ( ) ( ) ( ) ( )o2.4800.8cos/1922.4800.8cos00.80.24 2 −−=−⋅−= tsmt
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Damped Oscillation
More realistic oscillation where an oscillating object loses its mechanical 
energy in time by a retarding force such as friction or air resistance.

∑ xF

The angular frequency ω 
for this motion is

The solution for the above 2nd order 
differential equation is  

=x

We express the 
angular frequency as

This equation of motion tells us that when the retarding force is much smaller than restoration 
force, the system oscillates but the amplitude decreases, and  ultimately, the oscillation stops.

Let’s consider a system whose retarding force 
is air resistance R=-bv (b is called damping 
coefficient) and restoration force is -kx

ω
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More on Damped Oscillation

kAbv −→− max
As the retarding force becomes larger, the amplitude reduces 
more rapidly, eventually stopping at its equilibrium position

The motion is called Underdamped when the magnitude of 
the maximum retarding force Rmax = bvmax <kA

The system is Critically damped

How do you think the damping motion would change as 
retarding force changes?

0=ωUnder what condition this system 
does not oscillate?

If the retarding force is larger 
than restoration force

kAbvR >= maxmax The system is Overdamped

What do you think happen? Once released from non-equilibrium position, the object 
would return to its equilibrium position and stops.

Once released from non-equilibrium position, the object would return 
to its equilibrium position and stops, but a lot slower than before

m
b

2
=0ω

0= ωmb 2 mk2=



Monday, Nov. 25, 2002 PHYS 1443-003, Fall 2002
Dr. Jaehoon Yu

7

Newton’s Law of Universal Gravitation
People have been very curious about the stars in the sky, making
observations for a long time.  But the data people collected have not been 
explained until Newton has discovered the law of gravitation. 

Every particle in the Universe attracts every other particle with a 
force that is directly proportional to the product of their masses and 
inversely proportional to the square of the distance between them.

How would you write this 
principle mathematically? 2

12

21

r
mmFg ∝

1110673.6 −×=GG is the universal gravitational 
constant, and its value is

This constant is not given by the theory but must be measured byexperiment.

With G 2
12

21

r
mmGFg =

Unit? 22 / kgmN ⋅

This form of forces is known as an inverse-square law, because the magnitude of the 
force is inversely proportional to the square of the distances between the objects.
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It means that the force exerted on the particle 2 by 
particle 1 is attractive force, pulling #2 toward #1.

More on Law of Universal Gravitation
Consider two particles exerting gravitational forces to each other.

Gravitational force is a field force: Forces act on object without physical contact 
between the objects at all times, independent of medium between them.

122
21

12 r̂
r
mmGF −=

The gravitational force exerted by a finite size, 
spherically symmetric mass distribution on a particle 
outside the distribution is the same as if the entire mass 
of the distributions was concentrated at the center.

m1

m2

r

F21

F12

12r̂ Two objects exert gravitational force on each other 
following Newton’s 3rd law.

Taking         as the unit vector, we can 
write the force m2 experiences as

12r̂

What do you think the 
negative sign mean?

gF

How do you think the 
gravitational force on the 
surface of the earth look?

2
E

E

R
mMG=
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Free Fall Acceleration & Gravitational Force
Weight of an object with mass m is 
mg. Using the force exerting on a 
particle of mass m on the surface of 
the Earth, one can get

•The gravitational acceleration is independent of the mass of the object
•The gravitational acceleration decreases as the altitude increases
•If the distance from the surface of the Earth gets infinitely large, the weight of the 
object approaches 0.

What would the gravitational 
acceleration be if the object is at 
an altitude h above the surface of 
the Earth?

mg

What do these tell us about the gravitational acceleration?

gF

2
E

E

R
mMG=

g 2
E

E

R
MG=

'mg= 2r
mM

G E= ( )2hR
mMG

E
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+
=

'g ( )2hR
MG
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Example 14.2
The international space station is designed to operate at an altitude of 350km.  When 
completed, it will have a weight (measured on the surface of theEarth) of 4.22x106N.  
What is its weight when in its orbit?

The total weight of the station on the surface of the Earth is

Therefore the weight in the orbit is

GEF

OF

Since the orbit is at 350km above the surface of the Earth, 
the gravitational force at that height is

MEEE

OF

mg= 2
E

E

R
mMG= N61022.4 ×=

'mg= ( )2hR
mMG

E

E

+
=

( ) GE
E

E F
hR

R
2

2

+
=

( ) GE
E

E F
hR

R
2

2

+
= ( )

( ) N66
256

26

1080.31022.4
1050.31037.6

1037.6
×=××

×+×

×
=
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Example 14.3
Using the fact that g=9.80m/s2 at the Earth’s surface, find the average density of the Earth.

g
Since the gravitational acceleration is 

So the mass of the Earth is  

G
gR

M E
E

2

=

Therefore the density of the 
Earth is  ρ

2
E

E

R
MG= 2

111067.6
E

E

R
M−×=

E

E

V
M

=
3

2

4
E
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G
gR

3

=
π EGR

g
π4
3

=

33
611 /1050.5

1037.61067.64
80.93

mkg×=
××××

×
= −π
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Kepler’s Laws & Ellipse

Kepler lived in Germany and discovered the law’s governing planets’ 
movement some 70 years before Newton, by analyzing data.

Newton’s laws explain the cause of the above laws. Kepler’s third law is 
the direct consequence of law of gravitation being inverse square law.

•All planets move in elliptical orbits with the Sun at one focal point.
•The radius vector drawn from the Sun to a planet sweeps out equal 
area in equal time intervals. (Angular momentum conservation)
•The square of the orbital period of any planet is proportional to the 
cube of the semi-major axis of the elliptical orbit.

F1
F2

b

c

a
Ellipses have two different axis, major (long) and 
minor (short) axis, and two focal points, F1 & F2

a is the length of a semi-major axis
b is the length of a semi-minor axis
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The Law of Gravity and the Motion of Planets
•Newton assumed that the law of gravitation applies the same 
whether it is on the Moon or the apple on the surface of the Earth.
•The interacting bodies are assumed to be point like particles.

Therefore the centripetal acceleration of the Moon, aM, is

Newton predicted that the ratio of the Moon’s 
acceleration aM to the apple’s acceleration g would be 

g
aM

RE

Moon
Apple g aM

v

234 /1070.280.91075.2 smaM
−− ×=××=

Newton also calculated the Moon’s orbital accelerationaM from the knowledge of its distance 
from the Earth and its orbital period, T=27.32 days=2.36x106s

Ma

This means that the Moon’s distance is about 60 times that of the Earth’s radius, its acceleration 
is reduced by the square of the ratio.   This proves that the inverse square law is valid. 
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
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2

4
T
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2

=
π
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8
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=
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Kepler’s Third Law
It is crucial to show that Keper’s third law can be predicted from the 
inverse square law for circular orbits.

Since the orbital speed, v, of the planet with period T is

Since the gravitational force exerted by the Sun is radially
directed toward the Sun to keep the planet circle, we can 
apply Newton’s second law

2r
MGM Ps

T
r

v
π2

=

The above can be written

This is Keper’s third law.  It’s also valid for ellipse for r being the length of the 
semi-major axis.  The constant Ks is independent of mass of the planet. 

Msss

v

r

2r
MGM Ps

Solving for T 
one can obtain 

2T sKand

r

vM p
2

=

( )
r

TrM p
2/2π

=

3
24

r
GM s









=

π 3rKs= 







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24π
3219 /1097.2 ms−×=
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Example 14.4
Calculate the mass of the Sun using the fact that the period of the Earth’s orbit around 
the Sun is 3.16x107s, and its distance from the Sun is 1.496x1011m.

Using Kepler’s third law.

The mass of the Sun, Ms, is

2T

sM

3
24

r
GM s









=

π 3rK s=

3
24 r

GT 







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( )311
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2

10496.1
1016.31067.6

4 ××







×××

= −

π

kg301099.1 ×=
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Kepler’s Second Law and Angular Momentum Conservation

Since the gravitational force acting on the planet is 
always toward radial direction, it is a central force

Consider a planet of mass Mp moving around the Sun in an elliptical orbit.

τ

Because the gravitational force exerted on a 
planet by the Sun results in no torque, the 
angular momentum L of the planet is constant. 

This is Keper’s second law which states that the radius vector from the Sun 
to a planet sweeps our equal areas in equal time intervals. 

dA

Therefore the torque acting on the planet by this 
force is always 0.

Since torque is the time rate change of angular 
momentum L, the angular momentum is constant. τ

L

S B
A

D

C

r
dr

Since the area swept by the 
motion of the planet is dt

dA

Fr ×= rFr ˆ×= 0=

dt
Ld

= 0= L const=

pr ×= vMr p×= vrM p ×= const=

rdr ×=
2
1

dtvr ×=
2
1 dt

M
L

p2
=

pM
L

2
= const=


