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Review of Chapters 11 - 15
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Announcements
• Final Term Exam 

– Monday, Dec. 9, between 12:00pm – 1:30pm for 1.5 
hours in the class room

– Covers chapters 11 – 15
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Similarity Between Linear and Rotational Motions
All physical quantities in linear and rotational motions show striking similarity.

Momentum
RotationalKineticKinetic Energy

Power
WorkWorkWork
TorqueForceForce

Acceleration
Speed

Angle     (Radian)DistanceLength of motion

Moment of InertiaMassMass
RotationalLinearSimilar Quantity
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Work, Power, and Energy in Rotation
Let’s consider a motion of a rigid body with a single external 
force F exerting on the point P, moving the object by ds.
The work done by the force F as the object rotates 
through the infinitesimal distance ds=rdθ is 

What is Fsinφ? The tangential component of force F.

dW

Since the magnitude of torque is rFsinφ,

F
φ

O

rdθ
ds

What is the work done by 
radial component Fcosφ?

Zero, because it is perpendicular to the 
displacement.

dW

The rate of work, or power becomes P How was the power 
defined in linear motion?

The rotational work done by an external force 
equals the change in rotational energy. ∑τ

The work put in by the external force then dW

sdF ⋅= ( ) θφ rdF sin=

θτd=

dt
dW

=
dt
dθτ= τω=

αI= 





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
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Rolling Motion of a Rigid Body
What is a rolling motion?

To simplify the discussion, let’s 
make a few assumptions

Let’s consider a cylinder rolling without slipping on a flat surface

A more generalized case of a motion where the 
rotational axis moves together with the object

Under what condition does this “Pure Rolling” happen?

The total linear distance the CM of the cylinder moved is

Thus the linear 
speed of the CM is

A rotational motion about the moving axis

1. Limit our discussion on very symmetric 
objects, such as cylinders, spheres, etc

2. The object rolls on a flat surface

R θ s

s=Rθ

θRs=

dt
ds

vCM =

Condition for “Pure Rolling”

dt
d

R
θ

= ωR=
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Total Kinetic Energy of a Rolling Body

Where, IP, is the moment of 
inertia about the point P.

Since it is a rotational motion about the point 
P, we can writ the total kinetic energy

Since vCM=Rω, the above 
relationship can be rewritten as

2

2
1

ωPIK =

What do you think the total kinetic 
energy of the rolling cylinder is?

P

P’

CM
vCM

2vCM

Using the parallel axis theorem, we can rewrite

K

22

2
1

2
1

CMCM MvIK += ω

What does this equation mean? Rotational kinetic 
energy about the CM

Translational Kinetic 
energy of the CM

Total kinetic energy of a rolling motion is the sum 
of the rotational kinetic energy about the CM And the translational

kinetic of the CM

2

2
1

ωPI= ( ) 22

2
1

ωMRICM += 222

2
1

2
1

ωω MRICM +=
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Kinetic Energy of a Rolling Sphere

Since vCM=Rω

Let’s consider a sphere with radius R 
rolling down a hill without slipping.

222

2
1

2
1

ωω MRIK CM +=

R

x
h

θ
vCM

ω

2
2

2
1

2
1

CM
CM

CM Mv
R

vI +





=

Since the kinetic energy at the bottom of the hill must 
be equal to the potential energy at the top of the hill

What is the speed of the 
CM in terms of known 
quantities and how do you 
find this out?

K

2
22

1
CM

CM vM
R
I







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2
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1
CM
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Example 11.1
For solid sphere as shown in the figure, calculate the linear speed of the CM at the 
bottom of the hill and the magnitude of linear acceleration of the CM.

22

5
2

MRdmrICM == ∫

The moment of inertia the 
sphere with respect to the CM!!

Since h=xsinθ, 
one obtains

Thus using the formula in the previous slide

What must we know first?R

xh

θ
vCM

ω

2/1
2

MRI
ghv

CM
CM +

=

θsin
7

102 gxvCM = Using kinematic
relationship

xav CMCM 22 =

The linear acceleration 
of the CM is θsin

7
5

2

2

g
x

v
a CM

CM ==
What do you see?

Linear acceleration of a sphere does 
not depend on anything but g and θ.

5/21
2
+

=
gh

gh
7

10
=
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Example 11.2
For solid sphere as shown in the figure, calculate the linear speed of the CM at the 
bottom of the hill and the magnitude of linear acceleration of the CM.  Solve this problem 
using Newton’s second law, the dynamic method.

∑ xF

Gravitational Force,

Since the forces Mg and n go through the CM, their moment arm is 0 
and do not contribute to torque, while the static friction f causes torque

M
xh

θ

αRaCM =

CMτ

We know that  

What are the forces involved in this motion?

Mg

f

Newton’s second law applied to the CM gives
Frictional Force, Normal Force

n

x

y

2

5
2

MRICM =

We 
obtain 

f

Substituting f in 
dynamic equations CMMaMg

5
7sin =θ

fMg −= θsin CMMa=

∑ yF θcosMgn −= 0=

fR= αCMI=

R
ICM α

= 





=

R
a

R

MR
CM

2

5
2

CMMa
5
2

=

θsin
7
5 gaCM =
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x

y

z

O

Torque and Vector Product

The magnitude of torque given to the disk by the force F is

Let’s consider a disk fixed onto the origin O and 
the force F exerts on the point p. What happens?

φτ sinFr=

BAC ×≡

The disk will start rotating counter clockwise about the Z axis

The above quantity is called 
Vector product or Cross product

Fθ

τ=rxF

r p

But torque is a vector quantity, what is the direction? 
How is torque expressed mathematically? Fr ×≡τ
What is the direction? The direction of the torque follows the right-hand rule!!

What is the result of a vector product?
Another vector

What is another vector operation we’ve learned?

Scalar product θcosBABAC =⋅≡

Result? A scalar

θsinBABAC =×=
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Angular Momentum of a Particle
If you grab onto a pole while running, your body will rotate about the pole, gaining 
angular momentum.   We’ve used linear momentum to solve physicalproblems 
with linear motions, angular momentum will do the same for rotational motions.

φsinmvrL =

x

y

z

O

pφ

L=rxp

r m

Let’s consider a point-like object ( particle) with mass m located 
at the vector location r and moving with linear velocity v

prL ×≡
The instantaneous angular momentum 
L of this particle relative to origin O is 

What do you learn from this? If the direction of linear velocity points to the origin of 
rotation, the particle does not have any angular momentum.

What is the unit and dimension of angular momentum? 22 /smkg⋅

Note that L depends on origin O. Why? Because r changes

The direction of L is +zWhat else do you learn? 
Since p is mv, the magnitude of L becomes

If the linear velocity is perpendicular to position vector, the 
particle moves exactly the same way as a point on a rim.

The point O has 
to be inertial.
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Angular Momentum and Torque

Total external forces exerting on a particle is the same as the change of its linear momentum.

Can you remember how net force exerting on a particle 
and the change of its linear momentum are related?

∑ τ

Thus the torque-angular 
momentum relationship

The same analogy works in rotational motion between torque and angular momentum. 

Net torque acting on a particle is 

The net torque acting on a particle is the same as the time ratechange of its angular momentum

dt
pd

F =∑

dt
Ld

dt
Ld=∑ τ

x

y

z

O

pφ

L=rxp

r m Why does this work? Because v is parallel to 
the linear momentum

( )
dt

prd ×
=

dt
pd

rp
dt

rd
×+×=

dt
pd

r ×+= 0

∑×= Fr
dt

pd
r ×=
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Example 11.4
A particle of mass m is moving in the xy plane in a circular path of radius r and linear 
velocity v about the origin O.  Find the magnitude and directionof angular momentum 
with respect to O.

r

x

y v

O

L

Using the definition of angular momentum

Since both the vectors, r and v, are on x-y plane and 
using right-hand rule, the direction of the angular 
momentum vector is +z (coming out of the screen)

The magnitude of the angular momentum is L

So the angular momentum vector can be expressed as kmrvL =

Find the angular momentum in terms of angular velocity ω.

L

Using the relationship between linear and angular speed 

pr ×= vmr ×= vrm ×=

vrm ×= φsinmrv= o90sinmrv= mrv= mrvmrvmrvvrmL ===×= o90sinsinφ

kmrv= kmr ω2= ω2mr= ωI=



Wednesday, Dec. 4, 2002 PHYS 1443-003, Fall 2002
Dr. Jaehoon Yu

14

Angular Momentum of a Rotating Rigid Body
Let’s consider a rigid body rotating about a fixed axis

iiii vrmL =

Each particle of the object rotates in the xy plane about the z-
axis at the same angular speed, ω

ατ I
dt

dLz
ext ==∑Thus the torque-angular momentum 

relationship becomes

What do 
you see?

Since I is constant for a rigid body

Magnitude of the angular momentum of a particle of mass mi
about origin O is miviri

x

y

z

O

pφ

L=rxp

r m

Summing over all particle’s angular momentum about z axis

∑=
i

iz LL ( )ω∑=
i

iiz rmL 2

dt
dL z α is angular 

acceleration

Thus the net external torque acting on a rigid body rotating about a fixed axis is equal to the moment 
of inertia about that axis multiplied by the object’s angular acceleration with respect to that axis.

ω2
ii rm=

( )∑=
i

ii rm ω2 ωI=

dt
d

I
ω

= αI=
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Example 11.6
A rigid rod of mass M and length l pivoted without friction at its center.  Two particles of mass 
m1 and m2 are connected to its ends.  The combination rotates in a vertical plane with an 
angular speed of ω. Find an expression for the magnitude of the angular momentum.

I

The moment of inertia of this system is

α

First compute net 
external torque

θτ cos
21
l

gm=1

m1 g

x

y

O

l

m1

m2

θ m2 g

If m1 = m2, no angular 
momentum because net 
torque is 0. 
If θ=+/−π/2, at equilibrium 
so no angular momentum.







 ++== 21

2

3
1

4
mmM

l
IL ω
ω

Find an expression for the magnitude of the angular accelerationof the 
system when the rod makes an angle θ with the horizon.

2τττ += 1ext

Thus α 
becomes

21 mmrod III ++= 2
2

2
1

2

4
1

4
1

12
1

lmlmMl ++=







 ++= 21

2

3
1

4
mmMl

 cos
222 θτ
l

gm−=

( )
2

cos 21 mmgl −
=

θ

I
ext∑=

τ
( )







 ++

−
=

21

2

11

3
1

4

cos
2
1

mmM
l

glmm θ ( )
lg

mmM
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/

3
1

cos2

21

11







 ++

−
=

θ
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Conservation of Angular Momentum
Remember under what condition the linear momentum is conserved?

Linear momentum is conserved when the net external force is 0.










=

=

+=+

fi

fi

ffii

LL

pp

UKUKThree important conservation laws 
for isolated system that does not get 
affected by external forces

Angular momentum of the system before and 
after a certain change is the same.

By the same token, the angular momentum of a system 
is constant in both magnitude and direction, if the 
resultant external torque acting on the system is 0. 

constant== fi LL

constp
dt

pd
F

=

==∑ 0

0==∑ dt
Ld

extτ

What does this mean?

Mechanical Energy

Linear Momentum

Angular Momentum

constL =
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Example 11.8
A star rotates with a period of 30days about an axis through itscenter.  After the star 
undergoes a supernova explosion, the stellar core, which had a radius of 1.0x104km, collapses 
into a neutron start of radius 3.0km.  Determine the period of rotation of the neutron star.  

T
π

ω
2

=

What is your guess about the answer? The period will be significantly shorter, 
because its radius got smaller.

fi LL =

Let’s make some assumptions: 1. There is no torque acting on it
2. The shape remains spherical
3. Its mass remains constant

The angular speed of the star with the period T is

Using angular momentum 
conservation

Thus fω

ffi II ωωι =

f

i

I
I ιω

=
if

i

Tmr
mr π2

2

2

=

fT
fω

π2
= i

i

f T
r

r










= 2

2

days30
100.1
0.3 2

4 ×







×
= days6107.2 −×= s23.0=



Wednesday, Dec. 4, 2002 PHYS 1443-003, Fall 2002
Dr. Jaehoon Yu

18

Conditions for Equilibrium
What do you think does the term “An object is at its equilibrium” mean?

∑ = 0F

The object is either at rest (Static Equilibrium) or its center of mass 
is moving with a constant velocity (Dynamic Equilibrium). 

Is this it?   

When do you think an object is at its equilibrium?

Translational Equilibrium: Equilibrium in linear motion 

The above condition is sufficient for a point-like particle to be at its static 
equilibrium.   However for object with size this is not sufficient.   One more 
condition is needed.  What is it? 

Let’s consider two forces equal magnitude but opposite directionacting 
on a rigid object as shown in the figure.   What do you think will happen?

CM
d

d

F

-F

The object will rotate about the CM. The net torque 
acting on the object about any axis must be 0. 

For an object to be at its static equilibrium, the object should not 
have linear or angular speed. 

∑ = 0τ

0=CMv 0=ω
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More on Conditions for Equilibrium
To simplify the problems, we will only deal with forces acting on x-y plane, giving torque 
only along z-axis.   What do you think the conditions for equilibrium be in this case? 

The six possible equations from the two vector equations turns to three equations.

What happens if there are many forces exerting on the object?

Net torque about O

∑ = 0F ∑ = 0τ∑ = 0xF ∑ = 0zτ

O

F
1

F
4

F3

F 2

F5

r5 O’
r’

If an object is at its translational static equilibrium, and if the 
net torque acting on the object is 0 about one axis, the net 
torque must be 0 about any arbitrary axis.

∑ =⋅⋅⋅+++= 0321 FFFF

∑ Oτ

Net Force exerting on the object

'
'

rrr ii −=Position of force Fi about O’

Net torque about O’ ∑ 'Oτ

∑ 'Oτ

∑ = 0yF

⋅⋅⋅+×+×+×= 332211 FrFrFr ∑ ×= ii Fr 0=

( ) ( ) ⋅⋅⋅+×−+×−= 2211 '' FrrFrr ∑ ∑×−×= iii FrFr '⋅⋅⋅+×+×= 2211 '' FrFr

∑ ×−×= 0'rFr ii ∑= Oτ 0=
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Example 12.1
A uniform 40.0 N board supports a father and daughter weighing 800 N and 350 N, 
respectively.   If the support (or fulcrum) is under the center of gravity of the board and 
the father is 1.00 m from CoG, what is the magnitude of normal force n exerted on the 
board by the support?

Since there is no linear motion, this system 
is in its translational equilibriumF D

n
1m x

Therefore the magnitude of the normal force n

Determine where the child should sit to balance the system.

The net torque about the fulcrum 
by the three forces are 

τ

Therefore to balance the system 
the daughter must sit x

∑ xF 0=

∑ yF gM B= 0=gM F+ gM D+ n−

m
gM
gM

D

F 00.1⋅= mm 29.200.1
350
800 =⋅=

0⋅= gM B 00.1⋅+ gM F xgM D ⋅− 0=

N11903508000.40 =++=

MBg MFgMFg
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Example 12.1 Continued
Determine the position of the child to balance the 
system for different position of axis of rotation.

Since the normal force is 

The net torque about the axis of 
rotation by all the forces are 

τ

Therefore x

n
The net torque can 
be rewritten 

τ

What do we learn?

No matter where the 
rotation axis is, net effect of 
the torque is identical.

F D
n

MBgMFg MFg

1m x

x/2

Rotational axis

2/xgM B ⋅= 0=
gMgMgM DFB ++=

( )2/00.1 xgM F +⋅+ 2/xn ⋅− 2/xgM D ⋅−

2/xgM B ⋅= ( )2/00.1 xgM F +⋅+

( ) 2/xgMgMgM DFB ⋅++− 2/xgM D ⋅−

xgMgM DF ⋅−⋅= 00.1 0=

m
gM
gM

D

F 00.1⋅= mm 29.200.1
350
800

=⋅=
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Example 12.2
A person holds a 50.0N sphere in his hand.   The forearm is horizontal.  The biceps 
muscle is attached 3.00 cm from the joint, and the sphere is 35.0cm from the joint.  Find 
the upward force exerted by the biceps on the forearm and the downward force exerted 
by the upper arm on the forearm and acting at the joint.  Neglect the weight of forearm.

∑ xF

Since the system is in equilibrium, from 
the translational equilibrium condition

From the rotational equilibrium condition

O

FB

FU
mg

d

l

∑τ

Thus, the force exerted by 
the biceps muscle is

dFB ⋅

Force exerted by the upper arm is UF

0=
∑ yF mgFF UB −−= 0=

lmgdFF BU ⋅−⋅+⋅= 0 0=
lmg ⋅=

BF
d

lmg ⋅
= N583

00.3
0.350.50

=
×

=

mgFB −= N5330.50583 =−=
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Example 12.3
A uniform horizontal beam with a length of 8.00m and a weight of200N is attached to a wall 
by a pin connection.  Its far end is supported by a cable that makes an angle of 53.0o with the 
horizontal.  If 600N person stands 2.00m from the wall, find the tension in the cable, as well as 
the magnitude and direction of the force exerted by the wall on the beam.

∑ xF

From the rotational equilibrium

Using the 
translational 
equilibrium 

8m

53.0o

2m
FBD

R T

600Ν 200Ν
53.0oθ

Tsin53
Tcos53

Rsinθ

Rcosθ

First the translational equilibrium, 
using components

∑τ

And the magnitude of R is 

R

θcosR= 0=

∑ yF θsinR= 0=

00.80.53sin ×= oT 0=
NT 313=

θcosR

θsinR

o0.53cosT=

NNT 2006000.53sin ++−= o

o
o

o

7.71
0.53cos313

0.53sin313800
tan 1 =







 ×−
= −θ θcos

0.53cos oT
= N582

1.71cos
0.53cos313

=
×

= o

o

o0.53cosT−

o0.53sinT+ N600− N200−

00.2600 ×− N mN 00.4200 ⋅−
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Example 12.4
A uniform ladder of length l and weight mg=50 N rests against a smooth, vertical wall.  If 
the coefficient of static friction between the ladder and the ground is µs=0.40, find the 
minimum angle θmin at which the ladder does not slip.

∑ xF
θ

l FBD

First the translational equilibrium, 
using components

Thus, the normal force is 

∑ Oτ

mg

P

f

n
O

n
The maximum static friction force 
just before slipping is, therefore,

max
sf

From the rotational equilibrium

Pf −= 0=

∑ yF nmg +−= 0=

minmin sincos
2

θθ Pl
l

mg +−= 0=

minθ 





= −

P
mg
2

tan 1 o51
40
50

tan 1 =





= −

N
N

nsµ= NN 20504.0 =×= P=

mg= N50=
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How did we solve equilibrium problems?

1. Identify all the forces and their directions and locations
2. Draw a free-body diagram with forces indicated on it
3. Write down vector force equation for each x and y 

component with proper signs
4. Select a rotational axis for torque calculations è Selecting 

the axis such that the torque of one of the unknown forces 
become 0.

5. Write down torque equation with proper signs
6. Solve the equations for unknown quantities 
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Elastic Properties of Solids

strain
stress

Modulus Elastic ≡

We have been assuming that the objects do not change their 
shapes when external forces are exerting on it.   It this realistic?

No.  In reality, the objects get deformed as external forces acton it, 
though the internal forces resist the deformation as it takes place.

Deformation of solids can be understood in terms of Stress and Strain 

Stress: A quantity proportional to the force causing deformation.
Strain: Measure of degree of deformation

It is empirically known that for small stresses, strain is proportional to stress

The constants of proportionality are called Elastic Modulus

Three types of 
Elastic Modulus

1. Young’s modulus: Measure of the elasticity in length
2. Shear modulus: Measure of the elasticity in plane
3. Bulk modulus: Measure of the elasticity in volume
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Young’s Modulus

A
Fex≡Stress Tensile

Let’s consider a long bar with cross sectional area A and initial length Li. 

Fex=Fin

Young’s Modulus is defined as

What is the unit of Young’s Modulus?

Experimental 
Observations

1. For fixed external force, the change in length is 
proportional to the original length

2. The necessary force to produce a given strain is 
proportional to the cross sectional area

Li

A:cross sectional area

Tensile stress

Lf=Li+∆LFex After the stretch FexFin

Tensile strain
iL
L∆

≡Strain Tensile

Y

Force per unit area

Used to characterize a rod  
or wire stressed under 
tension or compression

Elastic limit: Maximum stress that can be applied to the substance 
before it becomes permanently deformed

Strain Tensile
Stress Tensile

≡
i

ex

L
L

A
F

∆
=
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kx−=F

Simple Harmonic Motion
What do you think a harmonic motion is?

Motion that occurs by the force that depends on displacement, and the 
force is always directed toward the system’s equilibrium position.

When a spring is stretched from its equilibrium position 
by a length x, the force acting on the mass is 

What is a system that has this kind of character? A system consists of a mass and a spring 

This is a second order differential equation that can 
be solved but it is beyond the scope of this class.

It’s negative, because the force resists against the change of 
length, directed toward the equilibrium position.

From Newton’s second law F we obtain a

2

2

dt
xd

What do you observe 
from this equation?

Acceleration is proportional to displacement from the equilibrium
Acceleration is opposite direction to displacement

Condition for simple 
harmonic motion

ma= kx−= x
m
k−=

x
m
k−=
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( )φω += tAcos

Equation of Simple Harmonic Motion
The solution for the 2nd order differential equation 

What happens when t=0 and φ=0?

Let’s think about the meaning of this equation of motion

x
m
k

dt
xd −=
2

2

What are the maximum/minimum possible values of x?

x
Amplitude Phase Angular 

Frequency
Phase 
constant

x

What is φ if x is not A at t=0? x

A/-A

An oscillation is fully 
characterized by its:

•Amplitude
•Period or frequency
•Phase constant

Generalized 
expression of a simple 
harmonic motion

( )φcosA= 'x=
φ ( )'cos 1 x−=

( )00cos += A A=
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More on Equation of Simple Harmonic Motion

Let’s now think about the object’s speed and acceleration.

Since after a full cycle the position must be the same

Speed at any given time

The period

What is the time for full 
cycle of oscillation? x

T One of the properties of an oscillatory motion

Frequency
How many full cycles of oscillation 
does this undergo per unit time?

f What is the unit?

1/s=Hz

x

v
a

Max speed maxv
Max acceleration 

maxaAcceleration at any given time

What do we learn 
about acceleration?

Acceleration is reverse direction to displacement
Acceleration and speed are π/2 off phase:

When v is maximum, a is at its minimum

( )( )φω ++= TtAcos ( )φπω ++= 2cos tA

ω
π2=

T
1

=
π

ω
2

=

( )φω += tAcos

dt
dx= ( )φωω +−= tAsin Aω=

dt
dv

= ( )φωω +−= tA   cos2 x2ω−= A2ω=
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Simple Block-Spring System

Does this solution satisfy the differential equation?

A block attached at the end of a spring on a frictionless surface experiences 
acceleration when the spring is displaced from an equilibrium position.

This becomes a second 
order differential equation

( )φω += tAx cos

Let’s take derivatives with respect to time

x
m
k

a −=

x
m
k

dt
xd −=
2

2 If we 
denote m

k=2ω

The resulting differential equation becomes x
dt

xd 2−= ω2

2

Since this satisfies condition for simple 
harmonic motion, we can take the solution

dt
dx

Now the second order derivative becomes

2

2

dt
xd

Whenever the force acting on a particle is linearly proportionalto the displacement from some 
equilibrium position and is in the opposite direction, the particle moves in simple harmonic motion.

Fig13-10.ip

( )( )φω += t
dt
d

A cos ( )φωω +Α−= tsin

( )( )φωω +Α−= t
dt
d

sin ( )φωω +Α−= tcos2 x2ω−=
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More Simple Block-Spring System

Special case #1

How do the period and frequency of this harmonic motion look?

Since the angular frequency ω is

Let’s consider that the spring is stretched to distance A and the block is let 
go from rest, giving 0 initial speed; xi=A, vi=0, 

The period, T, becomes

ω

So the frequency is 

•Frequency and period do not 
depend on amplitude
•Period is inversely proportional 
to spring constant and 
proportional to mass

v a

This equation of motion satisfies all the conditions.  So it is the solution for this motion.

T

f

What can we learn from these?

tx ωcosΑ= ia

Special case #2 Suppose block is given non-zero initial velocity vi to positive x at the 
instant it is at the equilibrium, xi=0

φ x
Is this a good 
solution?

m
k=

ω
π2=

k
mπ2=

T
1=

π
ω
2

=
m
k

π2
1=

dt
dx

= tωω sinΑ−= 2

2

dt
xd

= tωω cos2Α−= Α−= 2ω mkA/−=









−= −

i

i

x
v

ω
1tan ( )∞−= −1tan

2
−=

π








2
−Α=

π
ωtcos ( )tA ωsin=
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Example 13.3
A block with a mass of 200g is connected to a light spring for which the force constant is 
5.00 N/m and is free to oscillate on a horizontal, frictionless surface.  The block is displaced 
5.00 cm from equilibrium and released from reset.  Find the period of its motion.

From the Hook’s law, we obtain 

From the general expression of the 
simple harmonic motion, the speed is 

Ex13-03.ip

X=0
X=0.05

ω
As we know, period does not depend on the 
amplitude or phase constant of the oscillation, 
therefore the period, T, is simply

T
Determine the maximum speed of the block.

maxv
dt
dx= ( )φωω +−= tAsin

Aω= sm /25.005.000.5 =×=

ω
π2= s26.1

00.5
2 == π

m
k= 100.5

20.0
00.5 −== s
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Energy of the Simple Harmonic Oscillator
How do you think the mechanical energy of the harmonic oscillator look without friction?
Kinetic energy of a 
harmonic oscillator is

The elastic potential energy stored in the spring

Therefore the total 
mechanical energy of the 
harmonic oscillator is 

KE

PE

E

E

Total mechanical energy of a simple harmonic oscillator is a constant of 
a motion and is proportional to the square of the amplitude 

Maximum KE 
is when PE=0 maxKE

Since m
k=ω

One can obtain speed E

2

2
1

mv= ( )φωω +Α= tm 222 sin
2
1

2

2
1

kx= ( )φω +Α= tk 22 cos
2
1

PEKE+= ( ) ( )[ ]φωφωω +Α++Α= tktm 22222 cossin
2
1

PEKE += ( ) ( )[ ]φωφω +Α++Α= tktk 2222 cossin
2
1 2

2
1

kA=

2
max2

1
mv= ( )φωω +Α= tm 222 sin

2
1 22

2
1 Α= ωm 2

2
1 Α= k

PEKE += 22

2
1

2
1 kxmv += 2

2
1 Α= k

v ( )22 xAmk −+= 22 xA −+= ω xA-A

KE/PE E=KE+PE=kA2/2
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Example 13.4
A 0.500kg cube connected to a light spring for which the force constant is 20.0 N/m oscillates on a 
horizontal, frictionless track.  a) Calculate the total energy of the system and the maximum speed 
of the cube if the amplitude of the motion is 3.00 cm.

The total energy of 
the cube is

Ex13-04.ip

E

From the problem statement, A and k are mNk /0.20=

Maximum speed occurs when kinetic 
energy is the same as the total energy

2
maxmax 2

1 mvKE =

b) What is the velocity of the cube when the displacement is 2.00 cm.

velocity at any given 
displacement is

v
c) Compute the kinetic and potential energies of the system when the displacement is 2.00 cm.

Kinetic 
energy, KE

KE
Potential 
energy, PE

PE

mcmA 03.000.3 ==

PEKE += 2

2
1

kA= ( ) ( ) J32 1000.903.00.20
2
1 −×=×=

E= 2

2
1 kA=

maxv
m
kA= sm /190.0

500.0
0.2003.0 ==

( )22 xAmk −= ( ) sm /141.0500.0/02.003.00.20 22 =−⋅=

2

2
1

mv= ( ) J32 1097.4141.0500.0
2
1 −×=×= 2

2
1

kx= ( ) J32 1000.402.00.20
2
1 −×=×=
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The Pendulum
A simple pendulum also performs periodic motion.

The net force exerted on the bob is 

∑ rF

ALs θ=

Again became a second degree differential equation, 
satisfying conditions for simple harmonic motion

If θ is very small, sinθ~θ

Since the arc length, s, is  

2

2

dt
sd

2

2

dt
d θresults

mg
m

θ
L

T

s

2

2

dt
d θ

L
g=ωgiving angular frequency

The period for this motion is T The period only depends on the 
length of the string and the 
gravitational acceleration

AmgT θcos−= 0=

∑ tF Amg θsin−= ma=
2

2

dt
sd

m=

2

2

dt
d

L θ
= θsing−= θsin

L
g

−=

θ
L
g

−= θω 2−=

ω
π2

=
g
L

π2=
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Example 13.5
Christian Huygens (1629-1695), the greatest clock maker in history, suggested that an 
international unit of length could be defined as the length of a simple pendulum having a 
period of exactly 1s.  How much shorter would out length unit behad this suggestion 
been followed?

Since the period of a simple 
pendulum motion is T

The length of the pendulum 
in terms of T is 2

2

4π
gT

L =

Thus the length of the 
pendulum when T=1s is 

m
gT

L 248.0
4

8.91
4 22

2

=
×

==
ππ

Therefore the difference in 
length with respect to the 
current definition of 1m is L∆

ω
π2=

g
L

π2=

L−= 1 m752.0248.01 =−=
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Physical Pendulum
Physical pendulum is an object that oscillates about a fixed 
axis which does not go through the object’s center of mass.

Therefore, one can rewrite

Thus, the angular frequency ω is

The magnitude of the net torque provided by the gravity is  

∑ τ

I
mgd=ω

And the period for this motion is
mgd

I
T π

ω
π

2
2

==

By measuring the period of 
physical pendulum, one can 
measure moment of inertia.

O

CM

d

dsinθ

θ

mg

Consider a rigid body pivoted at a point O that is a distance d from the CM.

∑ τThen 

2

2

dt
d θ

Does this work for 
simple pendulum?

θsinmgd−=

αI=
2

2

dt
d

I
θ

= θsinmgd−=

θsin
I

mgd−= θ





−≈

I
mgd

θω 2−=
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Example 13.6
A uniform rod of mass M and length L is pivoted about one end and oscillates in a vertical 
plane.  Find the period of oscillation if the amplitude of the motion is small.

Moment of inertia of a uniform rod, 
rotating about the axis at one end is

Since L=1m, 
the period is

L

O
Pivot

CM

Mg

2

3
1

MLI =

The distance d from the pivot to the CM is L/2, 
therefore the period of this physical pendulum is

T

Calculate the period of a meter stick that is pivot about one end and is oscillating in 
a vertical plane.

s
g
LT 64.1

8.93
22

3
22 =

⋅
== ππ So the 

frequency is
161.0

1 −== s
T

f

ω
π2

=
Mgd

I
π2=

MgL
ML

3
2

2
2

π=
g
L

3
22π=



Wednesday, Dec. 4, 2002 PHYS 1443-003, Fall 2002
Dr. Jaehoon Yu

40

Simple Harmonic and Uniform Circular Motions
Uniform circular motion can be understood as a 
superposition of two simple harmonic motions in x and y axis.

When the particle rotates at a uniform angular 
speed ω, x and y coordinate position become

Since the linear velocity in a uniform circular 
motion is Aω, the velocity components are

x
t=0

x

y

O

P

φ
A

x

y

O

P

θ
A

Q

ω

x

y

t=t θ=ωt+φ

x

y

O

P

θ
A

Q

v

vx

xv

x

y

O

P

θ
A

Q

a

ax

Since the radial acceleration in a uniform circular 
motion is v2/A=ω2Α, the components are

xa

θcosA= ( )φω += tA cos
y θsinA= ( )φω += tA sin

θsinv−= ( )φωω +−= tA sin

yv θcosv+= ( )φωω += tA cos

θcosa−= ( )φωω +−= tA cos2

ya θsina−= ( )φωω +−= tA sin2
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Example 13.7
A particle rotates counterclockwise in a circle of radius 3.00m with a constant angular 
speed of 8.00 rad/s.  At t=0, the particle has an x coordinate of 2.00m and is moving to 
the right.   A) Determine the x coordinate as a function of time.

Since the radius is 3.00m, the amplitude of oscillation in x direction is 3.00m.  And the 
angular frequency is 8.00rad/s.  Therefore the equation of motion in x direction is

Since x=2.00, when t=0

However, since the particle was 
moving to the right φ=-48.2o, 

Using the 
displcement

x

( ) φcos00.300.2 m=

( ) ( )o2.4800.8cos00.3 −= tmx

Find the x components of the particle’s velocity and acceleration at any time t.

xv

Likewise, 
from velocity xa

θcosA= ( ) ( )φ+= tm 00.8cos00.3

o2.48
00.3
00.2cos 1 =






= −φ

dt
dx= ( ) ( ) ( ) ( )o2.4800.8sin/0.242.4800.8sin00.800.3 −−=−⋅−= tsmt

dt
dv= ( ) ( ) ( ) ( )o2.4800.8cos/1922.4800.8cos00.80.24 2 −−=−⋅−= tsmt
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Newton’s Law of Universal Gravitation
People have been very curious about the stars in the sky, making
observations for a long time.  But the data people collected have not been 
explained until Newton has discovered the law of gravitation. 

Every particle in the Universe attracts every other particle with a 
force that is directly proportional to the product of their masses and 
inversely proportional to the square of the distance between them.

How would you write this 
principle mathematically? 2

12

21

r
mmFg ∝

1110673.6 −×=GG is the universal gravitational 
constant, and its value is

This constant is not given by the theory but must be measured byexperiment.

With G 2
12

21

r
mmGFg =

Unit? 22 / kgmN ⋅

This form of forces is known as an inverse-square law, because the magnitude of the 
force is inversely proportional to the square of the distances between the objects.
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It means that the force exerted on the particle 2 by 
particle 1 is attractive force, pulling #2 toward #1.

More on Law of Universal Gravitation
Consider two particles exerting gravitational forces to each other.

Gravitational force is a field force: Forces act on object without physical contact 
between the objects at all times, independent of medium between them.

122
21

12 r̂
r
mmGF −=

The gravitational force exerted by a finite size, 
spherically symmetric mass distribution on a particle 
outside the distribution is the same as if the entire mass 
of the distributions was concentrated at the center.

m1

m2

r

F21

F12

12r̂ Two objects exert gravitational force on each other 
following Newton’s 3rd law.

Taking         as the unit vector, we can 
write the force m2 experiences as

12r̂

What do you think the 
negative sign mean?

gF

How do you think the 
gravitational force on the 
surface of the earth look?

2
E

E

R
mMG=
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Free Fall Acceleration & Gravitational Force
Weight of an object with mass m is 
mg. Using the force exerting on a 
particle of mass m on the surface of 
the Earth, one can get

•The gravitational acceleration is independent of the mass of the object
•The gravitational acceleration decreases as the altitude increases
•If the distance from the surface of the Earth gets infinitely large, the weight of the 
object approaches 0.

What would the gravitational 
acceleration be if the object is at 
an altitude h above the surface of 
the Earth?

mg

What do these tell us about the gravitational acceleration?

gF

2
E

E

R
mMG=

g 2
E

E

R
MG=

'mg= 2r
mM

G E= ( )2hR
mMG

E

E

+
=

'g ( )2hR
MG
E

E

+
=
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Example 14.2
The international space station is designed to operate at an altitude of 350km.  When 
completed, it will have a weight (measured on the surface of theEarth) of 4.22x106N.  
What is its weight when in its orbit?

The total weight of the station on the surface of the Earth is

Therefore the weight in the orbit is

GEF

OF

Since the orbit is at 350km above the surface of the Earth, 
the gravitational force at that height is

MEEE

OF

mg= 2
E

E

R
mMG= N61022.4 ×=

'mg= ( )2hR
mMG

E

E

+
=

( ) GE
E

E F
hR

R
2

2

+
=

( ) GE
E

E F
hR

R
2

2

+
= ( )

( ) N66
256

26

1080.31022.4
1050.31037.6

1037.6
×=××

×+×

×
=
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Example 14.3
Using the fact that g=9.80m/s2 at the Earth’s surface, find the average density of the Earth.

g
Since the gravitational acceleration is 

So the mass of the Earth is  

G
gR

M E
E

2

=

Therefore the density of the 
Earth is  ρ

2
E

E

R
MG= 2

111067.6
E

E

R
M−×=

E

E

V
M

=
3

2

4
E

E

R

G
gR

3

=
π EGR

g
π4
3

=

33
611 /1050.5

1037.61067.64
80.93

mkg×=
××××

×
= −π
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Kepler’s Laws & Ellipse

Kepler lived in Germany and discovered the law’s governing planets’ 
movement some 70 years before Newton, by analyzing data.

Newton’s laws explain the cause of the above laws. Kepler’s third law is 
the direct consequence of law of gravitation being inverse square law.

•All planets move in elliptical orbits with the Sun at one focal point.
•The radius vector drawn from the Sun to a planet sweeps out equal 
area in equal time intervals. (Angular momentum conservation)
•The square of the orbital period of any planet is proportional to the 
cube of the semi-major axis of the elliptical orbit.

F1
F2

b

c

a
Ellipses have two different axis, major (long) and 
minor (short) axis, and two focal points, F1 & F2

a is the length of a semi-major axis
b is the length of a semi-minor axis
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Kepler’s Third Law
It is crucial to show that Keper’s third law can be predicted from the 
inverse square law for circular orbits.

Since the orbital speed, v, of the planet with period T is

Since the gravitational force exerted by the Sun is radially
directed toward the Sun to keep the planet circle, we can 
apply Newton’s second law

2r
MGM Ps

T
r

v
π2

=

The above can be written

This is Keper’s third law.  It’s also valid for ellipse for r being the length of the 
semi-major axis.  The constant Ks is independent of mass of the planet. 

Msss

v

r

2r
MGM Ps

Solving for T 
one can obtain 

2T sKand

r

vM p
2

=

( )
r

TrM p
2/2π

=

3
24

r
GM s









=

π 3rKs= 







=

sGM

24π
3219 /1097.2 ms−×=
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Kepler’s Second Law and Angular Momentum Conservation

Since the gravitational force acting on the planet is 
always toward radial direction, it is a central force

Consider a planet of mass Mp moving around the Sun in an elliptical orbit.

τ

Because the gravitational force exerted on a 
planet by the Sun results in no torque, the 
angular momentum L of the planet is constant. 

This is Keper’s second law which states that the radius vector from the Sun 
to a planet sweeps our equal areas in equal time intervals. 

dA

Therefore the torque acting on the planet by this 
force is always 0.

Since torque is the time rate change of angular 
momentum L, the angular momentum is constant. τ

L

S B
A

D

C

r
dr

Since the area swept by the 
motion of the planet is dt

dA

Fr ×= rFr ˆ×= 0=

dt
Ld

= 0= L const=

pr ×= vMr p×= vrM p ×= const=

rdr ×=
2
1

dtvr ×=
2
1 dt

M
L

p2
=

pM
L

2
= const=
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The Gravitational Potential Energy
What is the potential energy of an object at the 
height y from the surface of the Earth?

No, it would not. 

Because gravitational force is a central force, and a 
central force is a conservative force, the work done by 
the gravitational force is independent of the path.

The path can be looked at as consisting of 
many tangential and radial motions.   
Tangential motions do not contribute to work!!!

U
Do you think this would work in general cases?

Why not? Because this formula is only valid for the case where the gravitational force 
is constant, near the surface of the Earth and the generalized gravitational 
force is inversely proportional to the square of the distance.

OK. Then how would we generalize the potential energy in the gravitational field?

RE

m

m

ri

Fg

rf

Fg

mgy=
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More on The Gravitational Potential Energy
Since the gravitational force is a radial force, it only performed work while the 
path was radial direction only. Therefore, the work performed bythe gravitational 
force that depends on the position becomes

Potential energy is the negative 
change of work in the path

dW

U∆

Since the Earth’s gravitational force is ( )
2r

mGM
rF E−=

So the potential energy 
function becomes if UU −

Since potential energy only matters for differences, by taking the 
infinite distance as the initial point of the potential energy, we get r

mGM
U E−=

For any two 
particles? r

mGm
U 21−=

The energy needed 
to take the particles 
infinitely apart.

For many  
particles?

∑=
ji

jiUU
,

,

rdF ⋅= ( )drrF=  → path  wholeFor the W ( )∫= f

i

r

r
drrF

if UU −= ( )∫−=
f

i

r

r
drrF

∫= f

i

r

r

E dr
r

mGM
2 











−−=

if
E rr
mGM

11
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Example 14.6
A particle of mass m is displaced through a small vertical distance ∆y near the Earth’s 
surface.  Show that in this situation the general expression for the change in gravitational 
potential energy is reduced to the ∆U=mg∆y.

Taking the general expression of 
gravitational potential energy

The above 
formula becomes

U∆

U∆
Since the situation is close to 
the surface of the Earth

EfEi RrRr ≈≈  and  

Therefore, ∆U becomes 2
E

E R
y

mGMU
∆

−=∆

Since on the surface of the 
Earth the gravitational field is 2

E

E

R
GM

g = The potential 
energy becomes 

ymgU ∆−=∆











−−=

if
E rr
mGM

11

( )
if

if
E rr

rr
mGM

−
−=

if
E rr

y
mGM

∆
−=
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Energy in Planetary and Satellite Motions
Consider an object of mass m moving at a speed 
v near a massive object of mass M (M>>m).

E

Systems like the Sun and the Earth or the Earth and the Moon whose 
motions are contained within a closed orbit is called Bound Systems.

2r
mGM E

For a system to be bound, the total energy must be negative.
Assuming a circular orbit, in order for the object to be kept in
the orbit the gravitational force must provide the radial 
acceleration.  Therefore from Newton’s second law of motion

M

v

r
What’s the 
total energy?

The kinetic energy for this system is 2

2
1 mv

Therefore the total 
mechanical energy 
of the system is

E
Since the gravitational 
force is conservative, the 
total mechanical energy of 
the system is conserved.

UK +=
r

GMm
mv −= 2

2
1

ma=
r
v

m
2

=

r
mGM E

2
=

UK +=
r

GMm
2

−=
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Example 14.7
The space shuttle releases a 470kg communication satellite while in an orbit that is 
280km above the surface of the Earth.  A rocket engine on the satellite boosts it into a 
geosynchronous orbit, which is an orbit in which the satellite stays directly over a single 
location on the Earth,  How much energy did the engine have to provide?

What is the radius of the geosynchronous orbit?

From Kepler’s 3rd law

T
2T

Therefore the 
geosynchronous radius is

Because the initial position 
before the boost is 280km

ir

The total energy needed to 
boost the satellite at the 
geosynchronous radius is the 
difference of the total energy 
before and after the boost 

Where KE is EK

GSr

E∆

3

2

EK
T

= ( ) ( )
m73

14

24
3

14

24

1023.4
1089.9
1064.8

1089.9
1064.8

×=
×
×

=
×
×

= −−

mR E
51080.2 ×+= m61065.6 ×=









−−=

iGS

sE

rr
mGM 11

2

J10
67

2411

1019.1
1065.6

1
1023.4

1
2

4701098.51067.6 ×=







×
−

×
××××−=

−

EGM

2

=
π4

3214 /1089.9 ms−×=
3

GSE rK=

sday 41064.81 ×==
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Escape Speed
Consider an object of mass m is projected vertically from the surface of 
the Earth with an initial speed v i and eventually comes to stop vf=0 at 
the distance rmax.

E
Solving the above equation 
for vi, one obtains

Therefore if the initial speed vi is known, one can use 
this formula to compute the final height h of the object.

Because the total 
energy is conserved

In order for the object to escape 
Earth’s gravitational field completely, 
the initial speed needs to be

RE

m

h

ME

vi

vf=0 at h=rmax

h

iv

escv

This is called the escape speed.  This formula is 
valid for any planet or large mass objects. 

How does this depend 
on the mass of the 
escaping object?

Independent of 
the mass of the 
escaping object

UK +=
E

E
i R

mGMmv −= 2

2
1

maxr
mGM E−=









−=

max

11
2

rR
GM

E
E

ERr −= max
EiE

Ei

RvGM
Rv

2

22

2 −
=

E

E

R
GM2

=
6

2411

1037.6
1098.51067.62

×
××××

=
−

skmsm /2.11/1012.1 4 =×=
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Fluid and Pressure
What are the three states of matter? Solid, Liquid, and Gas

Fluid cannot exert shearing or tensile stress.   Thus, the only force the fluid exerts 
on an object immersed in it is the forces perpendicular to the surfaces of the object.

A
F

P ≡

How do you distinguish them? By the time it takes for a particular substance to 
change its shape in reaction to external forces.

What is a fluid? A collection of molecules that are randomly arranged and loosely
bound by forces between them or by the external container.

We will first learn about mechanics of fluid at rest, fluid statics. 

In what way do you think fluid exerts stress on the object submerged in it?

This force by the fluid on an object usually is expressed in the form of 
the force on a unit area at the given depth, the pressure, defined as

Note that pressure is a scalar quantity because it’s 
the magnitude of the force on a surface area A.

What is the unit and 
dimension of pressure?

Expression of pressure for an 
infinitesimal area dA by the force dF is dA

dF
P =

Unit:N/m2

Dim.: [M][L-1][T-2]
Special SI unit for 
pressure is Pascal

2/11 mNPa ≡
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Example 15.1
The mattress of a water bed is 2.00m long by 2.00m wide and 30.0cm deep. 
a) Find the weight of the water in the mattress. 

The volume density of water at the normal condition (0oC and 1 atm) is 
1000kg/m3.  So the total mass of the water in the mattress is 

Since the surface area of the 
mattress is 4.00 m2, the 
pressure exerted on the floor is

m

P

Therefore the weight of the water in the mattress is 

W
b) Find the pressure exerted by the water on the floor when the bed rests in its 
normal position, assuming the entire lower surface of the mattress makes contact 
with the floor.

MWVρ= kg31020.1300.000.200.21000 ×=×××=

mg= N43 1018.18.91020.1 ×=××=

A
F

=
A

mg
= 3

4

1095.2
00.4

1018.1
×=

×
=
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Variation of Pressure and Depth
Water pressure increases as a function of depth, and the air pressure 
decreases as a function of altitude.   Why?

If the liquid in the cylinder is the same substance as the fluid, 
the mass of the liquid in the cylinder is 

MgAPPA −− 0

It seems that the pressure has a lot to do with the total mass of 
the fluid above the object that puts weight on the object.

Let’s consider a liquid contained in a cylinder with height h and 
cross sectional area A immersed in a fluid of density ρ at rest, as 
shown in the figure, and the system is in its equilibrium.

The pressure at the depth h below the surface of a fluid 
open to the atmosphere is greater than atmospheric 
pressure by ρgh.

Therefore, we obtain

Atmospheric pressure P0 is
Paatm 510013.100.1 ×=

P0A

PAMg

h

M

Since the system is in its equilibrium

P

What else can you learn from this?

Vρ= Ahρ=

AhgAPPA ρ−−= 0 0=

ghP ρ+= 0
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Pascal’s Law and Hydraulics
A change in the pressure applied to a fluid is transmitted undiminished 
to every point of the fluid and to the walls of the container.

The resultant pressure P at any given depth h increases as much as the change in P0. 

This is the principle behind hydraulic pressure. How?

Therefore, the resultant force F2 is

What happens if P0is changed?

P
Since the pressure change caused by the 
the force F1 applied on to the area A1 is 
transmitted to the F2 on an area A2.

ghPP ρ+= 0

This seems to violate some kind 
of conservation law, doesn’t it?

d1 d2
F1

A1

A2

F2

2F
In other words, the force get multiplied by 
the ratio of the areas A2/A1 is transmitted 
to the F2 on an area.

No, the actual displaced volume of the 
fluid is the same.  And the work done 
by the forces are still the same.

2F

1

1

A
F

=
2

2

A
F

=

1
2

1 F
d
d

=

1
1

2 F
A
A

=
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H

dy
y

h

Example 15.4
Water is filled to a height H behind a dam of width w.  Determine the resultant 
force exerted by the water on the dam.

Since the water pressure varies as a function of depth, we 
will have to do some calculus to figure out the total force. 

Therefore the total force exerted by the water on the dam is

P

The pressure at the depth h is

The infinitesimal force dF exerting on a small strip of dam dy is

dF

F

ghρ= ( )yHg −= ρ

PdA= ( )wdyyHg −= ρ

( )∫
=

=

−=
Hy

y

wdyyHg
0

ρ
Hy

y

yHyg
=

=




 −=

0

2

2
1

ρ 2

2
1 gHρ=
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Absolute and Relative Pressure
How can one measure pressure?

One can measure pressure using an open-tube manometer, 
where one end is connected to the system with unknown 
pressure P and the other open to air with pressure P0.

This is called the absolute pressure, because it is the 
actual value of the system’s pressure.

In many cases we measure pressure difference with respect to 
atmospheric pressure due to changes in P0 depending on the 
environment.   This is called gauge or relative pressure.

P

The common barometer which consists of a mercury column with oneend closed at vacuum 
and the other open to the atmosphere was invented by Evangelista Torricelli.

Since the closed end is at vacuum, it 
does not exert any force.  1 atm is

0P

The measured pressure of the system is

h

P P0

0PP−

ghP ρ+= 0

ghρ=

ghρ= )7600.0)(/80665.9)(/10595.13( 233 msmmkg×=

atmPa 110013.1 5 =×=
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Buoyant Forces and Archimedes’ Principle
Why is it so hard to put a beach ball under water while a piece of small 
steel sinks in the water?

The water exerts force on an object immersed in the water.  
This force is called Buoyant force.

How does the 
Buoyant force work?

Let‘s consider a cube whose height is h and is filled with fluid and at its 
equilibrium. Then the weight Mg is balanced by the buoyant forceB.

This is called, Archimedes’ principle. What does this mean?

The magnitude of the buoyant force always equals the weight of 
the fluid in the volume displaced by the submerged object.

B

BMg

h
And the pressure at the bottom of the 
cube is larger than the top by ρgh.

P∆Therefore,
Where Mg is the 
weight of the fluid.

gF= Mg=

AB /= ghρ=

B PA∆= ghAρ= Vgρ=

B gF= Vgρ= Mg=
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More Archimedes’ Principle
Let’s consider buoyant forces in two special cases. 

Let’s consider an object of mass M, with density ρ0, is 
immersed in the fluid with density ρf .

Case 1: Totally submerged object

The total force applies to different directions, depending on the 
difference of the density between the object and the fluid.

1. If the density of the object is smaller than the density of 
the fluid, the buoyant force will push the object up to the 
surface.

2. If the density of the object is larger that the fluid’s, the 
object will sink to the bottom of the fluid.

What does this tell you?

The magnitude of the buoyant force is

BMg

h

B

The weight of the object is gF

Therefore total force of the system is F

Vgfρ=

Mg= Vg0ρ=

gFB −= ( )Vgf 0ρρ −=
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More Archimedes’ Principle
Let’s consider an object of mass M, with density ρ0, is in 
static equilibrium floating on the surface of the fluid with 
density ρf , and the volume submerged in the fluid is Vf.

Case 2: Floating object

Since the object is floating its density is always smaller than 
that of the fluid. 

The ratio of the densities between the fluid and the object 
determines the submerged volume under the surface.

What does this tell you?

The magnitude of the buoyant force isBMg

h

B

The weight of the object is
gF

Therefore total force of the system is F

Since the system is in static equilibrium
gV ffρ

gV ffρ=

Mg= gV00ρ=

gFB −= gVgV ff 00ρρ −=

gV00ρ=

fρ
ρ 0

0V
V f=

0=
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Example 15.5
Archimedes was asked to determine the purity of the gold used in the crown.   
The legend says that he solved this problem by weighing the crown in air and 
in water.  Suppose the scale read 7.84N in air and 6.86N in water.  What 
should he have to tell the king about the purity of the gold in the crown? 

In the air the tension exerted by the scale on 
the object is the weight of the crown airT

In the water the tension exerted 
by the scale on the object is 

waterT

Therefore the buoyant force B is B
Since the buoyant force B is B
The volume of the displaced 
water by the crown is cV

Therefore the density of 
the crown is cρ

Since the density of pure gold is 19.3x103kg/m3, this crown is either not made of pure gold or hollow. 

mg= N84.7=

Bmg−= N86.6=

waterair TT −= N98.0=

gVwwρ= gVcwρ= N98.0=

wV=
g
N

wρ
98.0

= 34100.1
8.91000

98.0
m−×=

×
=

c

c

V
m

=
gV
gm

c

c=
gVc

84.7
= 33

4 /103.8
8.9100.1

84.7
mkg×=

××
= −
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Example 15.6
What fraction of an iceberg is submerged in the sea water?

Let’s assume that the total volume of the iceberg is Vi.  
Then the weight of the iceberg Fgi is 

Since the whole system is at its 
static equilibrium, we obtain

giF

Let’s then assume that the volume of the iceberg 
submerged in the sea water is Vw.  The buoyant force B 
caused by the displaced water becomes 

B

gViiρ
Therefore the fraction of the 
volume of the iceberg 
submerged under the surface of 
the sea water is i

w

V
V

About 90% of the entire iceberg is submerged in the water!!!

gViiρ=

gVwwρ=

gVwwρ=

w

i

ρ
ρ

= 890.0
/1030
/917

3

3

==
mkg
mkg
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Congratulations!!!!

•Good luck with your exams!!!

You all have done very well!!!

Happy Holidays!!
Enjoy the winter break!!!


