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Announcements

o Final Term Exam

— Monday, Dec. 9, between 12:00pm - 1:30pm for 1.5
hours In the class room

— Covers chapters 11 - 15
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Similarity Between Linear and Rotational Motions

All physical quantities in linear and rotational motions show stiking similarity.

Similar Quantity Linear Rotational
Mass Mass M Moment of Inertia
| = ¢y *dm
Length of motion | Distance L Angle g (Radian)
Speed = =L
Acceleration a =4 a =G
Force Force F=ma |Torque t =la
Work Work W =Q' Fa Work W =Q'tda
Power P=Fx P=tw
Momentum p=mv L=lw
Kinetic Energy  |Kinetic * =3m* [Rotational k<=3
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Work, Power, and Energy in Rotation

F Let’s consider a motion of a rigid body with a single external
force F exerting on the point P, moving the object by ds.

The work done by the force F as the object rotates
through the infinitesimal distance ds=rdq is
dW =F xgs = (F sinf )rdg

What is Fsinf 2 The tangential component of forceF.

What is the work done by Zero, because it is perpendicular to the
radial component Fcosf ? displacement.

Since the magnitude of torque isrFsinf,  dW =t dq
_dW _tdq_ W How was the power

The rate of work, or power becomes T dt . ot defined in linear motion?
The rotational work done by an external force 2o ., _,a8w ¢ amw Gelq O
: : atl =la =l¢c—==l¢c—¢—~
equals the change in rotational energy. edteg édqeedtg

The work put in by the external force then

d

W=¢
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Rolling Motion of a Rigid Body

What is a rolling motion? A more generalized case of a motion where the
rotational axis moves together with the object

A rotational motion about the moving axis

To simplify the discussion, let's 1.  Limit our discussion on very symmetric
make a few assumptions objects, such as cylinders, spheres, etc

2. The object rolls on a flat surface

Let’s consider a cylinder rolling without slipping on a flat surface

Under what condition does this “Pure Rolling” happen?
TN The total linear distance the CM of the cylinder moved is
\ s=R

- ds
Thus the linear | Ve = — = % —Rw
speed of the CM is dt dt

s=Rq
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Total Kinetic Energy of a Rolling Body

What do you think the total kinetic Since it is a rotational motion about the point
energy of the rolling cylinder is? P, we can writ the total kinetic energy
P’ 2v' K = 1— | w2 Where, |, is the moment of
CM P . . .
M 2 inertia about the point P.
>Vowm Using the parallel axis theorem, we can rewrite
1 1 1 1
K= 1w’ :E(ICM +MR2)\N2:§|CMW2+§I\/IR2W2
Since v¢,=Rw, the above
relationship can be rewritten as
What does this equation mean? Rotational kinetic Translational Kinetic
energy about the CM energy of the CM

Total kinetic energy of a rolling motion is the sum
of the rotational kinetic energy about the CM And the translational
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Kinetic Energy of a Rolling Sphere

Let's consider a sphere with radius R
rolling down a hill without slipping.

K =21 w2 + MR
2 2

1, 2,1

=—| = + =MV
Since vy, =Rw 2 MERg 2 M
bR MG
e
What is the speed of the Since the kinetic energy at the bottom of the hill must
CM in terms of known be equal to the potential energy at the top of the hill
quantities and how do you = %gdsg +M %2, = Mgh
find this out? € 2

v = \/ 2gh
cM ~
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Example 11.1

For solid sphere as shown in the figure, calculate the linear speed of the CM at the
bottom of the hill and the magnitude of linear acceleration of the CM.

What must we know first? The moment of inertia the
sphere with respect to the CM!!

| e :(‘jzdmzéMRz

Thus using the formula in the previous slide

Vem
) 2gh [2gh 10
Vem = 9 > = L = == gh
1+ 14, / MR 1+2/5 7
Since h=xsinq , _10 . Using kinematic Vo =
SIGL 2 == gxsin o e =20, X
one obtains ow = NG relationship cm = <G
The linear acceleration Vi, _5 <n What do you see?
of the CM is M X 7 gsnq Linear acceleration of a sphere does

- not depend on anything but g and g.
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Example 11.2

For solid sphere as shown in the figure, calculate the linear speed of the CM at the
bottom of the hill and the magnitude of linear acceleration of the CM. Solve this problem
using Newton’s second law, the dynamic method.

N What are the forces involved in this motion?

— f . .
\J < Gravitational Force, Frictional Force, Normal Force

Newton’s second law applied to the CM gives
q F, =Mgsing - f =Ma,,
a F, =n- Mgcosy =0

Since the forces Mg and n go through the CM, their moment arm is 0 t  =fR=| A
and do not contribute to torque, while the static friction f causes torque ~ €M c
2

We know that We f=lowd EMR2 ey 0 :EMaCM
5 obtain R™R &€Rpg °
|w:gM¥ o 5
Substituting f in Mgsing = Ma,, 8w =—gsing
3 = Ra dynamic equations S 7
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Torque and Vector Product

Let’s consider a disk fixed onto the origin O and
the force F exerts on the point p. What happens?

t=rxF

The disk will start rotating counter clockwise about the Z axis
> Y The magnitude of torque given to the disk by the forceF is

g F t =Franf
X b
But torque is a vector quantity, what is the direction? | > - = —
How is torque expressed mathematically? tor F

What is the direction?  The direction of the torque follows the right-hand rule!!

The above quantity is called C°A B
Vector product or Cross product ‘E‘ = ‘_A’ B :‘Zﬂﬁ‘gnq

What is the result of a vector product?  What is another vector operation we've learned?

Another vector Scalarproduct C° AXB = ‘AH B‘ cos g
Wednesday, Dec. 4, 2002 PHYS 1443-003, Fall 2002 LU
Dr. Jaehoon Yu Result? A scalar



Angular Momentum of a Particle

If you grab onto a pole while running, your body will rotate about the pole, gaining
angular momentum. We've used linear momentum to solve physicalproblems
with linear motions, angular momentum will do the same for rotaional motions.

Z

Let's consider a point-like object ( particle) with mass m located
at the vector location r and moving with linear velocity v

L=rx :
P The instantaneous angular momentum |— o v’ =
>y L of this particle relative to origin O is L r P
What is the unit and dimension of angular momentum?  kgprf/s
P

Note that L depends on origin O. Why?  Becauser changes
What else do you learn?  The direction of L is +z
Since p is mv, the magnitude of L becomes L = mvr sin f

What do you learn from this?  If the direction of linear velocity points to the origin of
rotation, the particle does not have any angular momentum.

e p_oth TEE If the linear velocity is perpendicular to position vector, the
to be inertial.

Wednesday, Dec. 4, 2002 ‘ particle moves exactly the same way as a point on a rim.
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Angular Momentum and Torgue

Can you remember how net force exerting on a particle o F - d B
and the change of its linear momentum are related? ar - dt

Total external forces exerting on a particle is the same as thechange of its linear momentum.
The same analogy works in rotational motion between torque and angular momentum.

. . O_’_—’,o—’_,,dp’
Nettorque actingonaparticleis g t =r Q F =r o

dt 0 dt
-

Why does this work? ~ BecauseV is parallel to
the linear momentum

P - dp
dt

o

Thus the torque-angular o —~ _d L

momentum relationship at dt

The net torque acting on a particle is the same as the time rate change of its angular momentum
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Example 11.4

A particle of mass mis moving in the xy plane in a circular path of radius r and linear

velocity v about the origin O. Find the magnitude and direction of angular momentum
with respect to O.

y 4 Using the definition of angular momentum
L=r"p=r"mv=mr’_v
Since both the vectors, r and v, are on x-y plane and

Vv
'
> . . . .
O X using right-hand rule, the direction of the angular
momentum vector is +z (coming out of the screen)

nr’ \4 =mrvanf =mrvan90 =mrv

The magnitude of the angular momentum is "—‘ =

So the angular momentum vector can be expressedas | = mrvk

Find the angular momentum in terms of angular velocity w.

Using the relationship between linear and angular speed
L =mrk =mriwk =mr?w = lw

B PHYS 1443-003, Fall 2002 13
4 Dr. Jaehoon Yu

Wednesday, Dec. 4, 2002




Angular Momentum of a Rotating Rigid Body

Let’s consider a rigid body rotating about a fixed axis

Each particle of the object rotates in the xy plane about the z-
axis at the same angular speed, w

» y Magnitude of the angular momentum of a particle of massm,

; about origin O ismvir. L, =mrv,=m I’iZW
Summing over all particle’s angular momentum about z axis

X
L,=a L =8 (mrw) whad =8 (mr2W =|w

i you see?
Since | is constant for a rigid body da. , _ | dw _ | a is angular
dt dt acceleration
Thus the torque-angular momentum é t = dL, = la
relationship becomes ext dt

Thus the net external torque acting on a rigid body rotating about a fixed axis is equal to the moment

of inertia about that axis multiplied by the object’s angular acceleration with respect to that axis.
vveanesaay, DecC. 4, ZUUZ FPHYS 1443-UU3, Fall ZUUZ 14
E Dr. Jaehoon Yu



Example 11.6

A rigid rod of mass M and length | pivoted without friction at its center. Two particles of mass
m, and m, are connected to its ends. The combination rotates in a vertical plane with an

angular speed of w. Find an expression for the magnitude of the angular momentum.

The moment of inertia of this system is

y 4
/\”2 | =g *lp +1o :iMI2+%mlI2+%m2I2
I/ \q) mig B 5 i
M+m+m = || = wi o 0
\/ 0 X 433 m, ng L=Ilw 483M+ml+ng
m
' Find an expression for the magnitude of the angular accelerationof the

lm]_g

system when the rod makes an angle g with the horizon.

If m, = m,, no angular
momentum because net
torque is 0.

If g=+/- p/2, at equilibrium
S0 No angular momentum.

Wednesday, Dec. 4, 2002

First compute net  t,

external torque
t,.=t, ,

o

=m.g I—cosq

I
t, =-m,g Pl

_glcosg(m - m,)
2

m, )gl cosq

_ 2(m, - m,)cosq o/l

Thus a a .ty =

becomes
oy

M

-b|_~r\)||—\
%‘T&i 3

|
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Conservation of Angular Momentum
Remember under what condition the linear momentum Is conserved?

i i . o -~ . _dp
Linear momentum is conserved when the net external forceis 0. [ F =0= 4~
Li= const

By the same token, the angular momentum of a system | o P dL - 0
is constant in both magnitude and direction, if the a le = dt
resultant external torque acting on the system is 0.

E = const

What does this mean?  Angular momentum of the system before and
after a certain change is the same.

Ei = Ef = constant

Three important conservation laws 1 Ki U = K +U ¢ Mechanical Energy

for isolated system that does not get ¥ P.=p, Linear Momentum

affected by external forces | —
tLi = L Angular Momentum

Wednesday, Dec. 4, 2002 o PHYS 1443-003, Fall 2002 16
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Example 11.8

A star rotates with a period of 30days about an axis through itscenter. After the star
undergoes a supernova explosion, the stellar core, which had a radius of 1.0x10*%km, collapses
into a neutron start of radius 3.0km. Determine the period of 1otation of the neutron star.

The period will be significantly shorter,
because its radius got smaller.

Let's make some assumptions: 1. There is no torque acting on it
2. The shape remains spherical

3. Its mass remains constant

What is your guess about the answer?

Using angular momentum L =L,
conservation | oy
W =1 Wy W = 2P
The angular speed of the star with the period T is T
Lw;, _nr® 2p
W =1 ' - [
Thus f | f = f2 T
oer ’ 0 e 3.0 (')'2
— il =6—————= " 30days =2.7" 10 °days =0.23s
i Wf & TG 0Ty, 4 4
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Conditions for Equilibrium

What do you think does the term “An object is at its equilibrium’ mean?

The object is either at rest (Static Equilibrium) or its center of mass
IS moving with a constant velocity (Dynamic Equilibrium).

When do you think an object is at its equilibrium?
P

Translational Equilibrium: Equilibrium in linear motion aF=0

Isthisit?  The above condition is sufficient for a point-like particle to be at its static

equilibrium. However for object with size this is not sufficient. One more
condition is needed. What is it?

Let’s consider two forces equal magnitude but opposite directionacting
on a rigid object as shown in the figure. What do you think wil happen?

“
The object will rotate about the CM. The net torque

acting on the object about any axis must be 0.
For an object to be at its static equilibrium, the object should not

have linear or angularspeed. . =0 w =0
Wednesday, Dec. 4, 2002 PHYS 1443-003, Fall 2002 CM
Dr. Jaehoon Yu

3t =0

18



More on Conditions for Equilibrium

To simplify the problems, we will only deal with forces acting on x-y plane, giving torque
only along z-axis. What do you think the conditions for equilibrium be in this case?

The six possible equations from the two vector equations turns to three equations.

4 F=0 aF~=0 At=0 AQt,=
aF, =0

What happens if there are many forces exerting on the object?
If an object is at its translational static equilibrium, and if the
net torque acting on the object is 0 about one axis, the net

torque must be 0 about any arbitrary axis.
. . o = _ =1 — —
: Net Force exerting on the object @ F =F1+F2+Fs+xx=0

o~ - = s = - = o~ ,= __
Nettorque about O @to=r1" Fi+ry” Fa+rs” Fe+xe=ali’ Fi =0

ol

'
-

Position of force F;about 0"y, =y, _

—_—

Nettorque about O' Ato =ry Fi+ra” Fosmelri- 1} Fielo- 1} Foemw=8& 1 Fi- 1" § Fi
é? Fi - F“O:éfo =QL9
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Example 12.1

A uniform 40.0 N board supports a father and daughter weighing 800 N and 350 N,

respectively. If the support (or fulcrum) is under the centerof gravity of the board and
the father is 1.00 m from CoG, what is the magnitude of normal force n exerted on the

board by the support?

Since there is no linear motion, this system
IS in its translational equilibrium

aF. =0

o

aF=M,g+M_g+M_g-N=0
Therefore the magnitude of the normal force  N=40.0+800+350=1190N

Determine where the child should sit to balance the system.

The net torque about the fulcrum t = N ] ~
by the three forces are M,gxX0+M_gx.00- Myg>xx=0

Therefore to balance the system _M.g 1 0om 800 ~
the daughter must sit X M.g —%’100“—22%

Wednesday, Dec. 4, 2002
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Example 12.1 Continued

Determine the position of the child to balance the
system for different position of axis of rotation.

Rotational axis

The net torque about the axis of
rotation by all the forces are

l =M g>x/2+M_g>(1.00+x/2)- nsx/2- Myg>x/2=C
Since the normal forceis N =M ;g+M_g+M g
The nettorquecan t =M gxx/2 +MFg><(l.OO+X/2)

be rewritten - (M,g+M_g+M_g)*x/2- M g>x/2
:MFQXLOO' IVIDng:O What do we learn?
Therefore X = Meg X.00m :8_OO>g_an: 229m  No matter where the
M,9 350 rotation axis is, net effect of

Wednesday, Dec. 4, 2002 Co)y PHYS 1443003, Fall 2002 the torque is identical.
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Example 12.2

A person holds a 50.0N sphere in his hand. The forearm is horzontal. The biceps
muscle is attached 3.00 cm from the joint, and the sphere is 350cm from the joint. Find
the upward force exerted by the biceps on the forearm and the downward force exerted
by the upper arm on the forearm and acting at the joint. Negled the weight of forearm.

Since the system is in equilibrium, from

the translational equilibrium condition
(o)

afk =0
aF, =F-F -mg=0
From the rotational equilibrium condition é t =R 0+F;>xd-mgXx =(Q

Thus, the force exerted by Fg>xd = mg>l
the hiceps muscle is mg >l _ 500" 350

Fg =
d 3.00
Force exerted by the upperarmis K, = F; - mg = 583- 50.0 = 533N

Wednesday, Dec. 4, 2002
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Example 12.3

A uniform horizontal beam with a length of 8.00m and a weight of200N is attached to a wall
by a pin connection. lIts far end is supported by a cable that makes an angle of 53.0° with the
horizontal. If 600N person stands 2.00m from the wall, find the tension in the cable, as well as
the magnitude and direction of the force exerted by the wall onthe beam.

R/ 53.00\T First the translational equilibrium,
600N| 200N using components

2
m ‘ 8 F, = Reos) - T cos530 =0
53.09

Rsing TS
— Rcosq Tcos53 a Fy =Rsing +Tsin530° - 600N - 200N=0
- 8m

From the rotational equilibrium at =Tsin530"" 8.00- 600N 2.00- 200N >4.00m=0
T =313N

Using the Rcog) =T cos530° And the magnitude of R is

translational ~ RsSing =-Tsin53.0° + 600N +200N

_Tcos530° 313 cosh3.0"

O R 582N
equilibrium ' P G 2
q 5= tan_laSOO- 313 sin530 2:7 17 cog) cos71.1
313205300 5
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Example 12.4

A uniform ladder of length | and weight mg=50 N rests against a smooth, vertical wall. If

the coefficient of static friction between the ladder and the ground is m=0.40, find the
minimum angle g,,;, at which the ladder does not slip.

P First the translational equilibrium,
using components

AF =f-P=0
ED) 2/, AF

o3 & F,=mgen=c

Thus, the normal force is nN=mg=50N

The maximum static friction force e )
just before slipping is, therefore, fS =mn=04"50N=20N =P

From the rotational equilibrium  §to=- mgl—zcosqmm +Plsing,;,=0

-1 0e) 1a0NO_ ...
L =tant—=*=tan'c——==51
qmln ezp z e4ON z
Wednesday, Dec. 4, 2002 e PHYS 1443-003, Fall 2002 24
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How did we solve equilibrium problems?

Identify all the forces and their directions and locations
Draw a free-body diagram with forces indicated on it

Write down vector force equation for each x and y
component with proper signs

Select a rotational axis for torque calculations =» Selecting
the axis such that the torque of one of the unknown forces

become 0.
Write down torque equation with proper signs
Solve the equations for unknown quantities
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Elastic Properties of Solids

We have been assuming that the objects do not change their
shapes when external forces are exerting on it. It this realistic?

No. In reality, the objects get deformed as external forces acton it,
though the internal forces resist the deformation as it takes phce.

Deformation of solids can be understood in terms of Stress and Strain

Stress: A quantity proportional to the force causing deformation.
Strain: Measure of degree of deformation

It is empirically known that for small stresses, strain is proportional to stress

o . : S
The constants of proportionality are called Elastic Modulus ElasticModulus® st:::

Three types of 1. Young's modulus: Measure of the elasticity in length
Elastic Modulus ~ 2- Shear modulus: Measure of the elasticity in plane
3. Bulk modulus: Measure of the elasticity in volume

Wednesday, Dec. 4, 2002 o PHYS 1443-003, Fall 2002 26
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Young’'s Modulus

Let's consider a long bar with cross sectional area A and initid length L.

L, - L=L+DL
: After the stretch w\ﬁ;
Fw:Fm

== A:cross sectional area

- - F : , : ., DL
Tensile stress TensileStress® Te" Tensile strain  TensleStrain© N

. Fe/ Used to characterize a rod
Tensile Stress = _ /A  orwire stressed under

Tensile Strain D%' tension or compression

Young's Modulus is defined as Y ©

What is the unit of Young's Modulus?  Force per unit area

1. Forfixed external force, the change in length is
proportional to the original length

2. The necessary force to produce a given strain is
proportional to the cross sectional area

Elastic limit: Maximum stress that can be applied to the substance
Wednesa: DEfore it becomes permanently deformed -

w Dr. Jaehoon Yu
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Simple Harmonic Motion

What do you think a harmonic motion is?

Motion that occurs by the force that depends on displacement, and the
force is always directed toward the system’s equilibrium position.

What is a system that has this kind of character? A system consists of a mass and a spring

When a spring is stretched from its equilibrium position F :ka
—V

by a length x, the force acting on the mass is
> >

It's negative, because the force resists against the change of
length, directed toward the equilibrium position.

k
From Newton's secondlaw = = TiA = - k)( we obtain Q@ =- EX

This is a second order differential equation thatcan  d?x _ K \ Condition for simple

be solved but it is beyond the scope of this class. dt 2 m harmonic motion

What do you observe  Acceleration is proportional to displacement from the equilibrium
from this equation? Acceleration is opposite direction to displacement
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Equation of Simple Harmonic Motion

The solution for the 214 order differential equation

Qe —

|Amplitude | |Phase|

Angular
Frequency

Phase

constant

Let's think about the meaning of this equation of motion
What happens when t=0 andf=0? X = ACOS(O + O) = A

What isf if x is not A at t=0?

What are the maximum/minimum possible values of x?

Wednesday, Dec. 4, 2002 a

d*x _ k
S = —X
dt m
Generalized

expression of a simple
harmonic motion

X = ACOS(f )= X' Anoscillation is fully

f =cos*(x)

A-A

PHYS 1443-003, Fall 2002
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characterized by its:

*Amplitude
*Period or frequency
*Phase constant
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More on Equation of Simple Harmonic Motion

What is the time for full  Since after a full cycle the position must be the same

cycle of oscillation? X = Acos(w(t+T)+f ) = Acos(wt +2p +f )
Theperiod | T = » One of the properties of an oscillatory motion
W
How many full cycles of oscillation T - What is the unit?
does this undergo per unit time? T 2p requency 1/s=Hz

Let's now think about the object’s speed and acceleration. X = ACOS(Wt +f )

Speed at any given time \/ = E =-wAsin (Wt +f ) Max speed V__ = WA

3 dv 2 Acod] )= w? Max acceleration
. . ' =—=-WA +f )=-
Acceleration at any given time dt W Acoswt WX 4 L =W2A

What do we learn Acceleration is reverse direction to displacement

about acceleration? Acceleration and speed are p/2 off phase:

When Vv is maximum, a is at its minimum
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¢ Simple Block-Spring System

Fig13-10.ip

A block attached at the end of a spring on a frictionless surface experiences s=- k ,
m

acceleration when the spring is displaced from an equilibrium pasition.

This becomes a second d?x _ ko ffwe 2 25
order differential equation di? EX denote m

d?x )
=-W°X
dt?

Since this satisfies condition for simple X = ACOS(Wt +f )
harmonic motion, we can take the solution

Does this solution satisfy the differential equation?

Let's take derivatives with respect to time ‘;_)t( = A%(cos(vvt +f )) = - WA sin (Wt +f )

Now the second order derivative becomes

2 d,.
C(!It;( =-wA a(sm(wt +f )): - WA cos(vvt +f ): -W?X
Whenever the force acting on a particle is linearly proportionalto the displacement from some

equilibrium position and is in the opposite direction, the particle moves in simple harmonic motion.
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More Simple Block-Spring System

How do the period and frequency of this harmonic motion look?

. . 2
Since the angular frequencywis W = ,/% UL D S VR T Wt

, *Frequency and period do not
The period, T, becomes T = <= 2p e depend on amplitude

W K *Period is inversely proportional
w1 [k to spring constant and
2p

So the frequencyis  f = = = proportional to mass

_ Let's consider that the spring is stretched to distance A and the block is let
Special case #1 g from rest, giving 0 initial speed; x=A, v.=0,
2

dx :
X=Acoswt V=—=-wAsnwt azd X:-WZACOSW'[ a:'WZA =-kA/m

dt dt?
& |

his equation of motion satisfies all the conditions. So it isthe solution for this motion.

Special case #2  Suppose block is given non-zero initial velocity v; to positive x at the
instant it is at the equilibrium, x=0

% v b 5 _ Is this a good
f :tan'lg- V\\l/—)'qi:tan'l(- ¥)=- % X = Acosg[\e/vt - %9 = Asin(Wt) | solution?
| 0 e 2
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0

Example 13.3

A block with a mass of 200g is connected to a light spring for which the force constant is
5.00 N/m and is free to oscillate on a horizontal, frictionlesssurface. The block is displaced
5.00 cm from equilibrium and released from reset. Find the perod of its motion.

E‘bﬁdi Bun Zoipt Wirdow Heb =81

Dlzia] sinje] Si2)| | s s [mese] From the Hook’s law, we obtain
Spring Cosslai | R e Maxs of Black fiogh .EUI
Psiieh o Bvch = 8,043 1 W= 1’£ = ,Mm = 5.00 S_l
Welnriy of Bleck = &06T s m O . 20
ricbikha = 18 X=0.05 As we know, period does not depend on the

amplitude or phase constant of the oscillation,
therefore the period, T, is simply

2p 2p
= = =1.26s
T w 5.00

Determine the maximum speed of the block.

dx .
From the general expression of the Viax = E = -WAsdgNn (Wt +f )

simple harmonic motion, the speed is
=wWA =5.00" 0.05=0.25m/s
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Energy of the Simple Harmonic Oscillator

How do you think the mechanical energy of the harmonic oscillator look without friction?

Kinetic energy of a 1, 1 onD D
. . . - — e pp— +
harmonic oscillator is K55 5t = 2t Al (wt +f)

1 1
The elastic potential energy stored in the spring Pl = > kx* = 2 KA? cos®(wt +f )

Therefore the total 1 _
mechanical energy of the E = KE+PE = E[mWZA2 sin?(wt +f )+ kA2 cos?(wt +f )]
harmonic oscillator is

Since w =%/ E=KE+PE =%[kAzsin2(vvt +f )+ KAZ cos?(wt +f ) :%kAZ

Total mechanical energy of a simple harmonic oscillator is a constant of
a motion and is proportional to the square of the amplitude

Maximum KE =g = imvrfqax = imWZAzsinZ(wt +f )= Lweaz=Lka?
Is when PE=0 2 2 2, 2

1 5.1, 5, 1,5, PR EokEsPE=KAY
: =KE + PE ==mv-+ =kx“=—=kA
One can obtain speed E 2 2 2 k g
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Example 13.4

A 0.500kg cube connected to a light spring for which the force constant is 20.0 N/m oscillates on a
horizontal, frictionless track. a) Calculate the total energy of the system and the maximum speed
of the cube if the amplitude of the motion is 3.00 cm.

k=20.0N/m
A=3.00cm=0.03m

The total energy of 1 1 ) )
the cube is gy E =KE+PE= kA? = 5(20.0) (0.03f =9.00" 10°3J

From the problem statement, A and k are

1
- L K —m — ——kA2
Maximum speed occurs when kinetic = = E
energy is the same as the total energy V. A\f AGE / 200 _ 0 100m/ s

b) What is the velocity of the cube when the displacement is 2.00 cm.

velocity at any given _ T2 2 ' i ‘ _
splacement i V=,/k/m{ A - %) =,/20040.0% - 0.022)/0.500=0.141m/s

¢) Compute the kinetic and potential energies of the system when the displacement is 2.00 cm.

ineti 1 1 , , ' 1 1. .
Kinetic e =Lm2=L0500" (0.141)2 =297 1029 POEMAl o _ Lo 1000 (0.02F =400 1073
energy, KE 2 2 energy, PE 2 2
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The Pendulum

A simple pendulum also performs periodic motion.

The net force exerted on the bob is
aF =T- mgcosq, =0

2
é. F, :-mgsinqA:ma:md >
dt?
Since the arc length, s,is S=Ldq,
d’s d’q _ : 7 .
w2 - - dt? =-93Nq | results (;tcz' = %Slnq

Again became a second degree differential equation,
satisfying conditions for simple harmonic motion

. . d4 .
If q is very small, sing~q dtCZI =- %q =-w?g giving angular frequency w = \/%

The period for this motion is T =22 = 2p \E The period only depends on the
w 9 length of the string and the

gravitational acceleration
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Example 13.5

Christian Huygens (1629-1695), the greatest clock maker in history, suggested that an
international unit of length could be defined as the length of a simple pendulum having a
period of exactly 1s. How much shorter would out length unit be had this suggestion
been followed?

Since the period of a simple _2p _ 5 L
pendulum motion is T = w P 7

The length of the pendulum | _ T®g

interms of T is 4p °

2 ,
Thus the length of the | = T°g_198_ 0.248
pendulum when T=1s is 4p 2 4p 2

Therefore the difference in

lengthwith respecttothe | =1- L =1- 0.248 = 0.752m

current definition of 1mis
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Physical Pendulum

Physical pendulum is an object that oscillates about a fixed
axis which does not go through the object’s center of mass.

Consider a rigid body pivoted at a point O that is a distance dfrom the CM.
The magnitude of the net torque provided by the gravity is

qt=-mgdsng
L e At=ia=1%9 = ngng
Therefore, one can rewrite 2 aamgd
d - _ rr!;dsn q » - Q—gq Zq
t2 | @
Thus, the angular frequencyW IS W = fmg;d By measuring the period of
| physical pendulum, one can
And the period for this motionis T = P _ op | Measure moment of inertia.
w mgd

Does this work for

simple pendulum?
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Example 13.6

A uniform rod of mass M and length L is pivoted about one end and oscillates in a vertical
plane. Find the period of oscillation if the amplitude of the motion is small.

O

. inerti ' 1
Pivot Moment of inertia of a uniform rod, ML 2

rotating about the axis at one end is 3

CM The distance d from the pivot to the CM is L/2,

therefore the period of this physical pendulum is

Mg :2_p=2 |—:2 2ML? 5 &
\ T w P Mgd > 3MgL . 39

Calculate the period of a meter stick that is pivot about one end and is oscillating in
a vertical plane.

Since L=1m 2L [ 2 So the 1 1
] T=2p | —=2p,|——=1.64s f ==—=0.61
the period is g \ 3¢ V308 frequency is T 0615
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Simple Harmonic and Uniform Circular Motions

Uniform circular motion can be understood as a
superposition of two simple harmonic motions in x and y axis.

4 A
2l ,,y-\p% Mo
N
/ P / A/ I\ / A \
/ %\ Iy \ / \
| f : > \9 ! > ! > | \q‘ : >
\\ O ) X \\ O] X Q// X \\ Ol v, Q// X \\ @) Q ;X
\\\ /// \\s._// \\s._// \\\._///
i, B e = A = (wt +f )
When the particle rotates at a uniform angular ~~ * ~ €080 = Acosit
speed w, x and y coordinate position become Y = Asdnq = Asn (Wt +f )

Since the linear velocity in a uniform circular v, =-vsng =- Awsin(wt +f )

motion is Aw, the velocity components are vV, =+vcosq = AwW cos(wt +f )

. . . . . . _ — 2
Since the radial acceleration in a uniform circular @, = - acosq = - Aw cos(wt +f )

motion is VZ/A , the components are a,=-asng =- Aw?sin (wt +f )
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Example 13.7

A particle rotates counterclockwise in a circle of radius 3.00mwith a constant angular
speed of 8.00rad/s. At t=0, the particle has an x coordinate of 2.00m and is moving to
the right. A) Determine the x coordinate as a function of time.

Since the radius is 3.00m, the amplitude of oscillation in x direction is 3.00m. And the
angular frequency is 8.00rad/s. Therefore the equation of motion in x direction is

X = Acosq = (3.00m)cos(8.00t +f )

Since x=2.00, whent=0  2.00 = (3.00m)cosf f = 005'188&9: 48 .2°

e3.00 g
However, since the particle was

moving to the right f =-48.2°, X = (3'00 m) COS (8'00t ) 48'20)

Find the x components of the particle’s velocity and acceleration at any time t.

Usingthe —, _dX
displcement 7 dt

Likewise,
frlomvcemcity a, :%’ =(- 24.098,00)cog8.00t - 482) = (- 192m/ &?)cod8.00t - 482')

= - (3.008.00)sin(8.00t - 482)= (- 24.0nmV s)sin8.00t - 482)
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Newton’s Law of Universal Gravitation

People have been very curious about the stars in the sky, making
observations for a long time. But the data people collected hawe not been
explained until Newton has discovered the law of gravitation.

Every particle in the Universe attracts every other particle with a
force that is directly proportional to the product of their masses and
Inversely proportional to the square of the distance between them.

How would you write this F u mm, F =g MM
principle mathematically? ’ r ? r
G is the universal gravitational _ p “11 - 2 2

constant, and its value is G =6.6/3" 10 unit?. N >m /kg

This constant is not given by the theory but must be measured by experiment.

This form of forces is known as an inverse-square law, because the magnitude of the
force is inversely proportional to the square of the distances between the objects.

Wednesday, Dec. 4, 2002 ° PHYS 1443-003, Fall 2002 42
Dr. Jaehoon Yu



More on Law of Universal Gravitation
Consider two particles exerting gravitational forces to each oter.

Two objects exert gravitational force on each other
following Newton’s 3" law.

<«
e 12
Fa Taking ;, as the unit vector, we can [=30 26}5 A o
write the force m, experiences as oy rz

2

—

What do you think the It means that the force exerted on the particle 2 by
negative sign mean? particle 1 is attractive force, pulling #2 toward #1.

Gravitational force is a field force: Forces act on object without physical contact
between the objects at all times, independent of medium betweenthem.

The gravitational force exerted by a finite size, How do you think the
spherically symmetric mass distribution on a particle gravitational force on the
outside the distribution is the same as if the entire mass  surface of the earth look?
of the distributions was concentrated at the center. M -m
F,=G—=

2
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Free Fall Acceleration & Gravitational Force

Weight of an object with mass m is .~ Mm
. . mg=:6 —&

mg. Using the force exerting on a RZ

particle of mass m on the surface of g =c M ¢

the Earth, one can get R¢
What wogld the _gravitatipnal_ F,=mg'=G Y. 3 M=G (RM JErrI:])2
acceleration be if the object is at r E
an altitude h above the surface of =G M .
the Earth? J (R. +h)?

What do these tell us about the gravitational acceleration?

*The gravitational acceleration is independent of the mass of the object
*The gravitational acceleration decreases as the altitude increases

o/f the distance from the surface of the Earth gets infinitely large, the weight of the
object approaches 0.
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Example 14.2

The international space station is designed to operate at an altitude of 350km. When
completed, it will have a weight (measured on the surface of the Earth) of 4.22x10°N.
What is its weight when in its orbit?

The total weight of the station on the surface of the Earth is

_ _~Mcm
FGE_rrg_G REZ —
E

Since the orbit is at 350km above the surface of the Earth,
the gravitational force at that height is

4.22° 10°N

M_.m R2
= =G = = E
"o T (R T R+ )

Therefore the weight in the orbit is
. R _ (6377 10°F
FO - 2 I:GE - B 6 B 5\2
(Re +h) (6.37" 10° +3.50" 10°)

)y PHYS 1443-003, Fall 2002 45
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Example 14.3

Using the fact that g=9.80m/s? at the Earth’s surface, find the average density of the Earth.

Since the gravitational acceleration is

g =G Ve 667 102 M
I:QE I:QE
So the mass of the Earth is V= R.°g
= G
Therefore the density of the 2
Earth is Re g
r =Me_ ¢ __39
Ve  4p R ? 4pGR
? E
3 9.80 ,
=~ —— =550 10kg/n7
4o’ 667 10 637 10
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Kepler's Laws & Ellipse

d
b Ellipses have two different axis, major (long) and

minor (short) axis, and two focal points, F, & F,

®
C . . : :
k F a is the length of a semi-major axis

b is the length of a semi-minor axis

Kepler lived in Germany and discovered the law’s governing planets’
movement some 70 years before Newton, by analyzing data.

*All planets move In elliptical orbits with the Sun at one focal point.
*The radius vector drawn from the Sun to a planet sweeps out equa
area in equal time intervals. (Angular momentum conservation)

*The square of the orbital period of any planet is proportional © the
cube of the semi-major axis of the elliptical orbit.

Newton’s laws explain the cause of the above laws. Kepler's third law is

the direct consequence of law of gravitation being inverse square law.
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Kepler's Third Law
It is crucial to show that Keper's third law can be predicted from the
Inverse square law for circular orbits.

Since the gravitational force exerted by the Sun isradially
directed toward the Sun to keep the planet circle, we can
apply Newton’s second law

GM M, M V2

r r
\ . . . . . 2pr
N 7 Since the orbital speed, v, of the planet with period Tis vV = ——
ST GM M, M,(2pr/T)

The above can be written —z =
r

Solving for T c_®4p° 0s_1e 3 _eedp? o -
: - T =Kr® and K= =297 10 °s*/m?®
one can obtain T gGM . g K™ and s gGM 5 977 10" "s"/m

This is Keper's third law. It's also valid for ellipse for r being the length of the
semi-major axis. The constant K, is independent of mass of the planet.
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Kepler's Second Law and Angular Momentum Conservation

Consider a planet of mass M, moving around the Sun in an elliptical orbit.

-— ea» o o

D™ TS Since the gravitational force acting on the planet is
l/ r 40,\) A always toward radial direction, it is acentral force
\ B s g Therefore the torque acting on the planet by this
\C‘ - - 7 force is always 0.
R - =i F=r Ff=0
Since torque is the time rate change of angular -~ dL e
momentum L, the angular momentum is constant. t =——=0 L = const

Because the gravitational force exetedona —  , _, - = "
planet by the Sun results in no torque, the | =r" p=r M,v=M,r"v=C0NS
angular momentum L of the planet is constant.

Since the area swept by the .01 dA _ L
motion of the planet is dA = E‘r dr= E‘ th‘ —dt r W = const

This is Keper's second law which states that the radius vector from the Sun
to a planet sweeps our equal areas in equal time intervals.
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The Gravitational Potential Energy

What is the potential energy of an object at the —
height y from the surface of the Earth? U rrgy

Do you think this would work in general cases? No, it would not.

Why not? Because this formula is only valid for the case where the gravitational force
I constant, near the surface of the Earth and the generalized gravitational
force is inversely proportional to the square of the distance.

OK. Then how would we generalize the potential energy in the gravitational field?

Because gravitational force is a central force, and a
central force is a conservative force, the work done by
the gravitational force is independent of the path.

The path can be looked at as consisting of
many tangential and radial motions.
Tangential motions do not contribute to work!!!
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More on The Gravitational Potential Energy

Since the gravitational force is a radial force, it only performed work while the
path was radial direction only. Therefore, the work performed bythe gravitational
force that depends on the position becomes

dW = F xdr = F(r)dr % %% %o w = F(r)dr

Potential energy is the negative

change of work in the path DU =U,-U;=-g F (r )ar

. . . . — GM Em
Since the Earth’s gravitational force is F(r)=- Z
So the potential energy o GM _ m €1 1u
function becomes Ji-Ui=Q 2 o Sl Emgf' Ea
Since potential energy only matters for differences, by taking the _ GMm

infinite distance as the initial point of the potential energy, we get U= r

Foranytwo —, _ Gmm, Theenergyneeded oo pany = 3 U,
articles? = Fo _ta_ke the particles _ - A
P ' ! infinitely apart. particles’ Y
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Example 14.6

A particle of mass m is displaced through a small vertical distance Dy near the Earth’'s

surface. Show that in this situation the general expression forthe change in gravitational
potential energy is reduced to the DU=mgDy.

Taking the general expression of 2 10

raavitgtitoﬁa?e O?G?]ti; I?er?e? o 0J=-cM Emé T+
g p gy rong

r.-r
The above EU:_GMEm(f '):-GMEmﬂ
formula becomes r.r r.r.
Since the situation is close to r»R_ andr. » R_
the surface of the Earth
_ Dy

Therefore, DU becomes DU = -GM Em?

E

Since on the surface of the _GM E. The potential |] | —
. ST g= P —_ ||gjy
Earth the gravitational field is Ré energy becomes
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__Energy in Planetary and Satellite Motions

-~
r N\,

s Consider an object of mass m moving at a speed
/ V near a massive object of mass M (M>>m).

/ \

\l What's the

| total energy?
/

\ /

E=K+U =—nwv
2

1 2_GMm
r

Systems like the Sun and the Earth or the Earth and the Moon whaose

N ,/ motions are contained within a closed orbit is called Bound Systems.

S o ,/

-—- For a system to be bound, the total energy must be negative.

Assuming a circular orbit, in order for the object to be kept in
the orbit the gravitational force must provide the radial
acceleration. Therefore from Newton's second law of motion

The kinetic energy for this system is 1 mv?2= —Gl\g gM
I
Therefore the total
mechanicalenergy E = K +U =- GMm
of the system is or

Wednesday, Dec. 4, 2002 o PHYS 1443-003, Fall 2002
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Since the gravitational
force is conservative, the
total mechanical energy of
the system is conserved.
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Example 14.7

The space shuttle releases a 470kg communication satellite while in an orbit that is
280km above the surface of the Earth. A rocket engine on the satellite boosts it into a
geosynchronous orbit, which is an orbit in which the satellite stays directly over a single
location on the Earth, How much energy did the engine have to provide?

What is the radius of the geosynchronous orbit? T =1day =8.64" 10*s

_ _ 4p° ,
FromKeplers3dlaw  T2= Krgs WhereKeis Kg “om_ - o8 0 s? I m?
Therefore the - 10*Y
o 64" 10°) . (8.64, 10_) 403" 107
geosynchronous radius is 989" 10°“ 989 10 ¥

Because the initial posion  r = R_ +2.80° 10°m = 6.65° 10°m
before the boost is 280km ' E :

The total energy needed to GM.ma&l 10
boost the satellite at the DE=-——¢ r—:
geosynchronous radius is the =
difference of the total energy  —. 6.67° 10" 5.98" 10" 47083 1 1 =1.19" 10°J
before and after the boost 2 €423 10" 665 106
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vE0at h, Escape Speed

Consider an object of mass m is projected vertically from the suface of
the Earth with an initial speedv;and eventually comes to stopv~=0 at

the distance r.

Because the total E-K+U-= 1.y2.GMem_ GMem
energy is conserved 2 R r.
Solving the above equation %1 1 6
for v;, one obtains V. = \/ZGM Eg - +
I:\)E lax @
Therefore if the initial speedv; is known, one can use n VZR2
this formula to compute the final height h of the object. = Tmax = Re = '
P : ) ET2GM . - V2R,
In order for the object to escape _ [26M . 5> 667 10" 598 10%
Earth’s gravitational field completely, Vesc = R, = 637 10°

the initial speed needs to be o
=1.12" 10"m/s=11.2km/s

This is called the escape speed. This formula is How does this depend  Independent of
valid for any planet or large mass objects. on the mass of the the mass of the
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Fluid and Pressure

What are the three states of matter? Solid, Liquid, and Gas

By the time it takes for a particular substance to
change its shape in reaction to external forces.

How do you distinguish them?

What is a fluid? A collection of molecules that are randomly arranged and loosely
U9 1 hound by forces between them or by the external container.

We will first learn about mechanics of fluid at rest, fluid statics.

In what way do you think fluid exerts stress on the object submerged in it?

Fluid cannot exert shearing or tensile stress. Thus, the onlyforce the fluid exerts

on an objectimmersed in it is the forces perpendicular to the surfaces of the object,
This force by the fluid on an object usually is expressed in theformof 5, F

(0]

the force on a unit area at the given depth, the pressure, defired as A

Expression of pressure for an _ dF  Note that pressure is a scalar quantity because it's
infinitesimal area dA by the force dFis © ~ "ga  the magnitude of the force on a surface area A.

What is the unit and Unit:N/m2 Special Sl unit for 0 2
dimension of pressure? | | pim.: [M][L4][T2] | pressure is Pascal 1Pa® IN/m
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Example 15.1

The mattress of a water bed is 2.00m long by 2.00m wide and 30.0cm deep.
a) Find the weight of the water in the mattress.

The volume density of water at the normal condition (0°C and 1 atm) is
1000kg/m?. So the total mass of the water in the mattress is

m=r,V,=1000" 2.00" 2.00" 0.300 =1.20" 10°kg
Therefore the weight of the water in the mattress is
W =mg=1.20" 10°" 9.8=1.18" 10*N

b) Find the pressure exerted by the water on the floor when thebed rests in its
normal position, assuming the entire lower surface of the mattress makes contact
with the floor.

Since the surface area of the

. 4
mattress is 4.00 n¥, the = F - Mg — 1.18" 10 = 205" 10°
pressure exerted on the floor is A A 4.00
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Variation of Pressure and Depth

Water pressure increases as a function of depth, and the air pressure
decreases as a function of altitude. Why?

PoA It seems that the pressure has a lot to do with the total mass of
l the fluid above the object that puts weight on the object.
h I Let's consider a liquid contained in a cylinder with height h and
I cross sectional area A immersed in a fluid of densityr at rest, as
Mg shown in the figure, and the system is in its equilibrium.
A

If the liquid in the cylinder is the same substance as the fluid,
the mass of the liquid in the cylinderis  pM =rV =r Ah

Since the system is inits equilibium ~ PA- FoA- Mg=PA- R A- 1 Ahg=0

Therefore, we obtain P= P0 +r gh The pressure at the depth h below the surface of a fluid

open to the atmosphere is greater than atmospheric

Atmospheric pressure Py is pressure by r gh.

1.00atm =1.013" 10°Pa

What else can you learn from this?
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Pascal's Law and Hydraulics

A change in the pressure applied to a fluid is transmitted undiminished
to every point of the fluid and to the walls of the container.

P =B, +rgh Whathappens if Pyis changed?

The resultant pressure P at any given depth h increases as muchas the change in P,,.

This is the principle behind hydraulic pressure. How?

- A Since the pressure change caused by the E F
d2 Fl‘ A, L"E—-: d, the force F; applied onto the area Ajis P =——=—*
F, transmitted to the F, on an area A,. Ay

~ In other words, the force get multiplied by
Therefore, the resultant force F, is F,= E Fi the ratio of the areas A,/A; is transmitted
to the F, on an area.

This seems to violate some kind | No, the actual displaced volume of the _d,
of conservation law, doesn't it? fluid is the same. And the work done F, = d_2

by the forces are still the same.
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Example 15.4

Water is filled to a height H behind a dam of width w. Determine the resultant
force exerted by the water on the dam.

Since the water pressure varies as a function of depth, we
will have to do some calculus to figure out the total force.

The pressure at the depth h is
p=rgh=rg(H - y)

The infinitesimal force dF exerting on a small strip of dam dy is

dF = PdA=r g(H - y)wdy

Therefore the total force exerted by the water on the dam is

ON
DA

ol vy =rgdy- 2yl =L
F= Og9H-ywdy=rgaHy- —y?7 ==rgH?
y=0 8 2 l::Iy:O 2
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Absolute and Relative Pressure

How can one measure pressure?

P P

h{

One can measure pressure using an open-tube manometer,
where one end is connected to the system with unknown
pressure P and the other open to air with pressure P,.

The measured pressure of the systemis P =P, +rgh

This is called the absolute pressure, because it is the
actual value of the system’s pressure.

In many cases we measure pressure difference with respect to P.P= h
atmospheric pressure due to changes in P, depending on the “ o™ rg
environment. This is called gauge or relative pressure.

The common barometer which consists of a mercury column with one end closed at vacuum
and the other open to the atmosphere was invented by Evangelista Torricelli.

Since the closed end is at vacuum, it~ B =rgh = (13.595" 10°kg / m*)(9.80665 m/ s*)(0.7600 m)
does not exert any force. latmis ~1013 1FPa=1atrr
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Buoyant Forces and Archimedes’ Principle

Why is it so hard to put a beach ball under water while a piece of small
steel sinks in the water?

The water exerts force on an object immersed in the water.
This force is called Buoyant force.

How does the The magnitude of the buoyant force always equals the weight of
Buoyant force work? the fluid in the volume displaced by the submerged object.

This is called, Archimedes’ principle. What does this mean?

Let's consider a cube whose height is h and is filled with fluid and at its
equilibrium. Then the weight Mg is balanced by the buoyant forceB.

B = Fg — Mg And the pressure at the bottom of the

h}_ cube is larger than the top byr gh.
Therefore, pp=B/A=Trgh

B _ Where Mg is the
B=DPA=Trg 7 Weight of the fuid.
B=F, =rVg =Mg
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More Archimedes’ Principle
Let's consider buoyant forces in two special cases.

Case 1: Totally submerged object Let's consider an object of mass M, with densityr , is
immersed in the fluid with density r .

The magnitude of the buoyant forceis B =T ;VQ
h}_ | The weight of the objectis  F, =Mg =r Vg
Therefore total force of the systemis F = B- F,= (r - o 0)\/g
The total force applies to different directions, depending on the
difference of the density between the object and the fluid.
1. Ifthe density of the object is smaller than the density of

the fluid, the buoyant force will push the object up to the
surface.

2. Ifthe density of the object is larger that the fluid's, the
object will sink to the bottom of the fluid.

What does this tell you?
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More Archimedes’ Principle

Case 2: Floating object  Let’s consider an object of mass M, with densityr o, is in
static equilibrium floating on the surface of the fluid with
h}—i density r ., and the volume submerged in the fluid is V;.

Mg The magnitude of the buoyant forceis B =T ;V; 0

The weight of the objectis  F_ = Mg =r V,g

Therefore total force of the system is F=B-F,=r;V,g-ry,g =0

Since the system is in static equilibrium VG =ToVod
To _ Vi
ry v,
Since the object is floating its density is always smaller than

What does this tell you?

that of the fluid.

The ratio of the densities between the fluid and the object
determines the submerged volume under the surface.
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Example 15.5

Archimedes was asked to determine the purity of the gold used inthe crown.
The legend says that he solved this problem by weighing the crown in air and
in water. Suppose the scale read 7.84N in air and 6.86N in water. What
should he have to tell the king about the purity of the gold inthe crown?

In the air the tension exerted by the scale on — _
the object Is the weight of the crown T | Mg =7.84N

In the water the tension exerted water =g - B =6.86N

by the scale on the object is
Therefore the buoyant force B is B =T - T =0.98N

Since the buoyant force B is B=r,V,9=r,V.g=0.98N

The volume of the djsplaced Vv = 0.98N  0.98 —1.0° 10-*1°
water by the crown is <™ r.g 1000 9.8

Therefore the density of (=M Mg _784_ 784 oo
the crown is c V., V.g V.g 10 10* 98 J

Since the density of pure gold is 19.3x10%kg/m?, this crown is either not made of pure gold or hollow.
o pr. Jaenoon yu



Example 15.6

What fraction of an iceberg is submerged in the sea water?

Let's assume that the total volume of the iceberg is V. F =rV
- - - = ivig
Then the weight of the iceberg F; is g

Let's then assume that the volume of the iceberg
submerged in the sea water isV,. The buoyantforceB B =T ,V,, 0
caused by the displaced water becomes

Since the whole system is at its
static equilibrium, we obtain

Therefore the fraction of the 3
volume of the iceberg Vw — M _ 917 kg /' m

submerged under the surface of \/. r B 1030 kg /' m?3
the sea water is ! W

riVig - rvag

=0.890

About 90% of the entire iceberg is submerged in the water!!!
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Congratulations!!!!

You all have done very well!!!

«(Good luck with your exams!!!

Happy Holidays!!
Enjoy the winter break!!!
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