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PHYS 1443 – Section 003
Lecture #16
Monday, Oct. 27, 2002

Dr. Jaehoon Yu
1. Center of Mass
2. Motion of a group of particles
3. Rotational Motion
4. Rotational Kinematics
5. Rotational Energy
6. Moment of Inertia

Remember the 2nd term exam (ch 6 – 11), Monday, Nov. 3!
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Center of Mass
We’ve been solving physical problems treating objects as sizeless
points with masses, but in realistic situation objects have shapes 
with masses distributed throughout the body.    

Center of mass of a system is the average position of the system’s mass and 
represents the motion of the system as if all the mass is on the point. 

Consider a massless rod with two balls attached at either end.
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The total external force exerted on the system of 
total mass M causes the center of mass to move at 
an acceleration given by                         as if all 
the mass of the system is concentrated on the 
center of mass.

MFa /∑=

What does above 
statement tell you 
concerning forces being 
exerted on the system?

m1 m2
x1 x2

The position of the center of mass of this system is 
the mass averaged position of the systemxCM CM is closer to the 

heavier object
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Center of Mass of a Rigid Object
The formula for CM can be expanded to Rigid Object or a 
system of many particles 

A rigid body – an object with shape 
and size with mass spread throughout 
the body, ordinary objects – can be 
considered as a group of particles with 
mass mi densely spread throughout 
the given shape of the object
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The net effect of these small gravitational 
forces is equivalent to a single force acting on 
a point (Center of Gravity) with mass M.

Center of Mass and Center of Gravity
The center of mass of any symmetric object lies on an 
axis of symmetry and on any plane of symmetry, if 
object’s mass is evenly distributed throughout the body.

Center of Gravity

How do you think you 
can determine the CM of 
objects that are not 
symmetric?

gF

∆mi

CM

Axis of 
symmetryOne can use gravity to locate CM.

1. Hang the object by one point and draw a vertical line 
following a plum-bob.

2. Hang the object by another point and do the same.
3. The point where the two lines meet is the CM. 

∆mig

Since a rigid object can be considered as collection 
of small masses, one can see the total gravitational 
force exerted on the object as 

What does this 
equation tell you?
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Example for Center of Mass
A system consists of three particles as shown in the figure.  Find the 
position of the center of mass of this system.

Using the formula for CM for each 
position vector componentm1
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Example of Center of Mass; Rigid Body

The formula for CM of a continuous object is

∫
=

=
=

Lx

xCM xdm
M

x
0

1

Therefore

L
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dm=λdx

Since the density of the rod (λ) is constant;

CMx

Show that the center of mass of a rod of mass M and length L lies in midway 
between its ends, assuming the rod has a uniform mass per unit length.

Find the CM when the density of the rod non-uniform but varies linearly as a function of x, λ=α x
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Motion of a Group of Particles
We’ve learned that the CM of a system can represent the motion of a system.  
Therefore, for an isolated system of many particles in which the total mass 
M is preserved, the velocity, total momentum, acceleration of the system are

Velocity of the system CMv

Total Momentum 
of the system CMp

Acceleration of 
the system CMa

External force exerting 
on the system ext

F∑

If net external force is 0 0=∑ ext
F System’s momentum 

is conserved.

What about the 
internal forces?
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Fundamentals on Rotation
Linear motions can be described as the motion of the center of 
mass with all the mass of the object concentrated on it.   

Is this still true for 
rotational motions?

No, because different parts of the object have 
different linear velocities and accelerations.

Consider a motion of a rigid body – an object that 
does not change its shape – rotating about the axis 
protruding out of the slide. 

One radian is the angle swept by an arc length equal to the radius of the arc.
o360Since the circumference of a circle is 2πr,

The relationship between radian and degrees is

θr
P

s

O
θrs =The arc length, or sergita, is

r
s

=θTherefore the angle, θ, is            . And the unit of 
the angle is in radian.

rad 1

rr /2π= π2=

π2/360o= π/180o=
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Using what we have learned in the previous slide, how 
would you define the angular displacement? =∆θ
Angular Displacement, Velocity, and Acceleration

How about the average angular speed? ≡ω

And the instantaneous angular speed? ≡ω

By the same token, the average angular 
acceleration

≡α

And the instantaneous angular 
acceleration? ≡α

When rotating about a fixed axis, every particle on a rigid object rotates through  
the same angle and has the same angular speed and angular acceleration.
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Rotational Kinematics
The first type of motion we have learned in linear kinematics was 
under a constant acceleration.  We will learn about the rotational 
motion under constant angular acceleration, because these are the 
simplest motions in both cases.

=fω

Just like the case in linear motion, one can obtain

Angular Speed under constant 
angular acceleration:

Angular displacement under 
constant angular acceleration:

=fθ

One can also obtain =2
fω
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Example for Rotational Kinematics
A wheel rotates with a constant angular acceleration of 3.50 rad/s2.  If 
the angular speed of the wheel is 2.00 rad/s at ti=0, a) through what 
angle does the wheel rotate in 2.00s?

if θθ −
Using the angular displacement 
formula in the previous slide, one gets

What is the angular speed at t=2.00s? tif αωω +=

Using the angular speed and 
acceleration relationship

Find the angle through which the wheel 
rotates between t=2.00 s and t=3.00 s.
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Relationship Between Angular and Linear Quantities
What do we know about a rigid object that rotates 

about a fixed axis of rotation?

When a point rotates, it has both the linear and angular motion 
components in its motion.  
What is the linear component of the motion you see?

tv

Every particle (or masslet) in the object moves in a 
circle centered at the axis of rotation.

ri

P

θ

O x

y vt

Linear velocity along the tangential direction.
How do we related this linear component of the motion 
with angular component?
θrs =The arc-length is So the tangential speed vt is

What does this relationship tell you about 
the tangential speed of the points in the 
object and their angular speed?:

Although every particle in the object has the same 
angular speed, its tangential speed differs 
proportional to its distance from the axis of rotation.

The farther away the particle is from the center of 
rotation, the higher the tangential speed.

The 
direction 
of ω
follows a 
right-hand 
rule.

dt
ds= ( )θr

dt
d=

dt
dr θ= ωr=
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How about the Accelerations?

ωrvt =

r
P

θ

O x

y at Two
How many different linear accelerations do you see 
in a circular motion and what are they?

Total linear acceleration is

Since the tangential speed vt is

What does this 
relationship tell you?

Although every particle in the object has the same angular 
acceleration, its tangential acceleration differs proportional to its 
distance from the axis of rotation.

Tangential, at, and the radial acceleration, ar.ar

taThe magnitude of tangential 
acceleration at is

The radial or centripetal acceleration ar is
ra

a

What does 
this tell you?

The father away the particle from the rotation axis the more radial 
acceleration it receives.  In other words, it receives more centripetal force.

a

dt
dvt= ( )ωr
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dr ω= αr=

r
v 2

=
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r
r 2ω

= 2ωr=

22
rt aa += ( ) ( )222 ωα rr += 42 ωα +=r
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Example for Rotational Motion
Audio information on compact discs are transmitted digitally through the readout system consisting of 
laser and lenses.   The digital information on the disc are stored by the pits and flat areas on the track.   
Since the speed of readout system is constant, it reads out the same number of pits and flats in the same 
time interval.  In other words, the linear speed is the same no matter which track is played.  a) Assuming 
the linear speed is 1.3 m/s, find the angular speed of the disc in revolutions per minute when the inner 
most (r=23mm) and outer most tracks (r=58mm) are read.

Using the relationship 
between angular and 
tangential speed

b) The maximum playing time of a standard music 
CD is 74 minutes and 33 seconds.  How many 
revolutions does the disk make during that time?

c) What is the total length of the track past through the readout mechanism?
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d) What is the angular acceleration of the CD over 
the 4473s time interval, assuming constant α?
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