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PHYS 1443 – Section 003
Lecture #17

Wednesday, Oct. 29, 2002
Dr. Jaehoon Yu

1. Rolling Motion of a Rigid Body
2. Torque
3. Moment of Inertia
4. Rotational Kinetic Energy
5. Torque and Vector Products

Remember the 2nd term exam (ch 6 – 11), Monday, Nov. 3!
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Using what we have learned in the previous slide, how 
would you define the angular displacement? =∆θ
Angular Displacement, Velocity, and Acceleration

How about the average angular speed? ≡ω

And the instantaneous angular speed? ≡ω

By the same token, the average angular 
acceleration

≡α

And the instantaneous angular 
acceleration? ≡α

When rotating about a fixed axis, every particle on a rigid object rotates through  
the same angle and has the same angular speed and angular acceleration.
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Rotational Kinematics
The first type of motion we have learned in linear kinematics was 
under a constant acceleration.  We will learn about the rotational 
motion under constant angular acceleration, because these are the 
simplest motions in both cases.

=fω

Just like the case in linear motion, one can obtain

Angular Speed under constant 
angular acceleration:

Angular displacement under 
constant angular acceleration:

=fθ

One can also obtain =2
fω

ti αω +

2

2
1

ttii αωθ ++

( )ifi θθαω −+ 22
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Rolling Motion of a Rigid Body
What is a rolling motion?

To simplify the discussion, let’s 
make a few assumptions

Let’s consider a cylinder rolling without slipping on a flat surface

A more generalized case of a motion where the 
rotational axis moves together with the object

Under what condition does this “Pure Rolling” happen?

The total linear distance the CM of the cylinder moved is

Thus the linear 
speed of the CM is

A rotational motion about the moving axis

1. Limit our discussion on very symmetric 
objects, such as cylinders, spheres, etc

2. The object rolls on a flat surface

R θ s

s=Rθ

θRs=

dt
ds

vCM =

Condition for “Pure Rolling”

dt
d

R θ
= ωR=



Wednesday, Oct. 29, 2003 PHYS 1443-003, Fall 2002
Dr. Jaehoon Yu

5

More Rolling Motion of a Rigid Body

As we learned in the rotational motion, all points in a rigid body 
moves at the same angular speed but at a different linear speed.

At any given time the point that comes to P has 0 linear 
speed while the point at P’ has twice the speed of CM

The magnitude of the linear acceleration of the CM is

A rolling motion can be interpreted as the sum of Translation and Rotation

CMa

Why??
P

P’

CM
vCM

2vCM

CM is moving at  the same speed at all times.

P

P’

CM
vCM

vCM

vCM

+
P

P’

CM

v=Rω

v=0

v=Rω

=
P

P’

CM

2vCM

vCM

dt
dvCM=

dt
d

R ω
= αR=
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Torque
Torque is the tendency of a force to rotate an object about an axis.  
Torque, τ, is a vector quantity.

≡τMagnitude of torque is defined as the product of the force 
exerted on the object to rotate it and the moment arm.

F
φ

d

Line of 
Action

Consider an object pivoting about the point P
by the force F being exerted at a distance r. 

P

r

Moment 
arm

The line that extends out of the tail of the force 
vector is called the line of action.
The perpendicular distance from the pivoting point 
P to the line of action is called Moment arm.

When there are more than one force being exerted on certain 
points of the object, one can sum up the torque generated by each 
force vectorially.  The convention for sign of the torque is positive if 
rotation is in counter-clockwise and negative if clockwise. 

d2

F2

21 τττ +=∑
2211 dFdF −=

=φsinrF Fd
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R1

Example for Torque
A one piece cylinder is shaped as in the figure with core section protruding from the 
larger drum.  The cylinder is free to rotate around the central axis shown in the picture.   
A rope wrapped around the drum whose radius is R1 exerts force F1 to the right on the 
cylinder, and another force exerts F2 on the core whose radius is R2 downward on the 
cylinder.  A) What is the net torque acting on the cylinder about the rotation axis?

The torque due to F1 111 FR−=τ

Suppose F1=5.0 N, R1=1.0 m, F2= 15.0 N, and R2=0.50 m.  What is the net torque 
about the rotation axis and which way does the cylinder rotate from the rest?

R2

F1

F2

and due to F2 222 FR=τ

Using the 
above result

=+=∑ 21 τττSo the total torque acting on 
the system by the forces is

2211 FRFR +−=∑τ The cylinder rotates in 
counter-clockwise.

2211 FRFR +−

mN •=×+×−= 5.250.00.150.10.5
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Torque & Angular Acceleration
Let’s consider a point object with mass m rotating on a circle.

What does this mean?

The tangential force Ft and radial force Fr

The tangential force Ft is

What do you see from the above relationship?

m
r

Ft

Fr

What forces do you see in this motion?

tt maF =

The torque due to tangential force Ft is rFt=τ

ατ I=
Torque acting on a particle is proportional to the angular acceleration.

What law do you see from this relationship? Analogs to Newton’s 2nd law of motion in rotation.

How about a rigid object?

r

dFt

dm

O

The external tangential force dFt is =tdF

=∑τ

The torque due to tangential force Ft is

The total torque is

=τd

What is the contribution due 
to radial force and why?

Contribution from radial force is 0, because its 
line of action passes through the pivoting 
point, making the moment arm 0.

αmr=

rmat= α2mr= αI=

=tdma αdmr

=rdFt ( )αdmr 2

=∫ dmr2α αI
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Example for Torque and Angular Acceleration
A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is 
free to rotate about the pivot in the vertical plane.  The rod is released from rest in the 
horizontal position. What are the initial angular acceleration of the rod and the initial linear 
acceleration of its right end?

The only force generating torque is the gravitational force Mg

τ

Using the relationship between tangential and 
angular acceleration

∫=
L

dmrI
0

2Since the moment of inertia of the rod 
when it rotates about one end

L/2

Mg

We obtain 

α
ta

What does this mean?

The tip of the rod falls faster than 
an object undergoing a free fall.

Fd=
2
L

F=
2
L

Mg= αI=

∫=
L

dxx
0
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Moment of Inertia 
Rotational Inertia:

What are the dimension and 
unit of Moment of Inertia?

∑≡
i

iirmI 2

2mkg⋅[ ]2ML

Measure of resistance of an object to 
changes in its rotational motion.  
Equivalent to mass in linear motion.

Determining Moment of Inertia is extremely important for 
computing equilibrium of a rigid body, such as a building.

dmrI ∫≡ 2For a group 
of particles

For a rigid 
body
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Example for Moment of Inertia
In a system consists of four small spheres as shown in the figure, assuming the radii are 
negligible and the rods connecting the particles are massless, compute the moment of 
inertia and the rotational kinetic energy when the system rotates about the y-axis at ω.

I

Since the rotation is about y axis, the moment of 
inertia about y axis, Iy, is

RKThus, the rotational kinetic energy is 

Find the moment of inertia and rotational kinetic energy when the system rotates on 
the x-y plane about the z-axis that goes through the origin O.

x

y

This is because the rotation is done about y axis, 
and the radii of the spheres are negligible.Why are some 0s?

M Ml l

m

m

b

b
O

I RK

2
i

i
irm∑= 2222 00 ⋅+⋅++= mmMlMl 22Ml=

2

2
1

ωI= ( ) 222
2
1

ωMl= 22ωMl=

2
i

i
irm∑= 2222 mbmbMlMl +++= ( )222 mbMl += 2

2
1 ωI= ( ) 222 22

2
1 ωmbMl += ( ) 222 ωmbMl +=



Wednesday, Oct. 29, 2003 PHYS 1443-003, Fall 2002
Dr. Jaehoon Yu

12

Rotational Kinetic Energy
What do you think the kinetic energy of a rigid object 
that is undergoing a circular motion is? 

Since a rigid body is a collection of masslets, the total kinetic energy of the 
rigid object is

Since moment of Inertia, I, is defined as

Kinetic energy of a masslet, mi, 
moving at a tangential speed, vi, is

ri

mi

θ

O x

y vi

iK

RK

∑=
i

iirmI 2

2= ωIKR 2
1

The above expression is simplified as

2

2
1

iivm= 2= ω2
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
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2
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Calculation of Moments of Inertia
Moments of inertia for large objects can be computed, if we assume 
the object consists of small volume elements with mass, ∆mi.

It is sometimes easier to compute moments of inertia in terms 
of volume of the elements rather than their mass

Using the volume density, ρ, replace 
dm in the above equation with dV.

The moment of inertia for the large rigid object is

How can we do this?

∑ ∆=
→∆

i
iim

mrI
i

2

0
lim ∫= dmr2

dV
dm

=ρ The moments of 
inertia becomes ∫= dVrI 2ρ

Example: Find the moment of inertia of a uniform hoop of mass M and radius R 
about an axis perpendicular to the plane of the hoop and passing through its center.

x

y

RO

dm The moment 
of inertia is ∫= dmrI 2

What do you notice 
from this result?

The moment of inertia for this 
object is the same as that of a 
point of mass M at the distance R.

∫= dmR2 2MR=

dVdm ρ=
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Example for Rigid Body Moment of Inertia
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis perpendicular to the rod and passing through its center of mass.

The line density of the rod is  

What is the moment of inertia 
when the rotational axis is at 
one end of the rod.

x

y

L
x

dx

L
M

=λ

so the masslet is  dm

The moment 
of inertia is  

I

∫= dmrI 2

Will this be the same as the above.  
Why or why not?

Since the moment of inertia is resistance to motion, it makes perfect sense 
for it to be harder to move when it is rotating about the axis at one end.
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L
M

=
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x

y

(x,y)

xCM

(xCM,yCM)

y CM

CM

Parallel Axis Theorem
Moments of inertia for highly symmetric object is easy to compute if the 
rotational axis is the same as the axis of symmetry.  However if the axis of 
rotation does not coincide with axis of symmetry, the calculation can still be 
done in simple manner using parallel-axis theorem. 2MDII CM +=

y

x

r

Moment of inertia is defined ∫= dmrI 2

Since x and y are

x’

y’

'xxx CM +=

One can substitute x and y in Eq. 1 to obtain

( ) ( )[ ]∫ +++= dmyyxxI CMCM
22 ''

Since the x’ and y’ are the 
distance from CM, by definition ∫ = 0' dmx

D

Therefore, the parallel-axis theorem

CMIMD += 2

What does this 
theorem tell you?

Moment of inertia of any object about any arbitrary axis are thesame as 
the sum of moment of inertia for a rotation about the CM and that of the 
CM about the rotation axis.

( ) (1)   22∫ += dmyx

'yyy CM +=

( ) ( )dmyxdmyydmxxdmyx CMCMCMCM ∫∫∫∫ +++++= 2222 '''2'2

∫ = 0'dmy

( ) ( )dmyxdmyxI CMCM ∫∫ +++= 2222 ''
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Example for Parallel Axis Theorem
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis that goes through one end of the rod, using parallel-axis theorem.

The line density of the rod is  

Using the parallel axis theorem

L
M=λ

so the masslet is  dx
L
M

dxdm == λ

The moment of 
inertia about 
the CM 

CMI

MDII CM
2+=

The result is the same as using the definition of moment of inertia.
Parallel-axis theorem is useful to compute moment of inertia of a rotation of a rigid 
object with complicated shape about an arbitrary axis

x

y

L
x

dxCM

M
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





+=

∫= dmr 2 dx
L
MxL

L∫−
=

2/

2/

2 2/

2/

3

3
1

L

L

x
L
M

−




=


















 −−






=

33

223
LL

L
M

1243

23 MLL
L

M
=








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x

y

z

O

Torque and Vector Product

The magnitude of torque given to the disk by the force F is

Let’s consider a disk fixed onto the origin O and 
the force F exerts on the point p. What happens?

φτ sinFr=

BAC ×≡

The disk will start rotating counter clockwise about the Z axis

The above quantity is called 
Vector product or Cross product

Fθ

τ=rxF

r p

But torque is a vector quantity, what is the direction? 
How is torque expressed mathematically? Fr ×≡τ
What is the direction? The direction of the torque follows the right-hand rule!!

What is the result of a vector product?
Another vector

What is another vector operation we’ve learned?

Scalar product θcosBABAC =⋅≡

Result? A scalar

θsinBABAC =×=



Wednesday, Oct. 29, 2003 PHYS 1443-003, Fall 2002
Dr. Jaehoon Yu

18

Properties of Vector Product

( )
dt

BAd ×

Vector Product is Non-commutative What does this mean?

If the order of operation changes the result changes ABBA ×≠×

ABBA ×−=×
Following the right-hand rule, the direction changes

Vector Product of two parallel vectors is 0.

BAC ×= 0=× AAThus,

If two vectors are perpendicular to each other

BA×

Vector product follows distribution law

( )CBA +×
The derivative of a Vector product with respect to a scalar variable is 

θsinBA= 00sin == BA

θsinBA= o90sinBA= ABBA ==

CABA ×+×=

dt
Bd

AB
dt

Ad
×+×=
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More Properties of Vector Product
The relationship between 
unit vectors, kji  and  ,

kkjjii ×=×=×

=× BA

Vector product of two vectors can be expressed in the following determinant form 

0=

ji × ij ×−= k=

kj × jk ×−= i=

ik × ki ×−= j=

zyx

zyx

BBB

AAA

kji

zy

zy

BB
AA

i=
zx

zx

BB
AA

j−
yx

yx

BB
AA

k+

( )iBABA yzzy  −= ( ) jBABA xzzx −− ( )kBABA xyyx −+
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Similarity Between Linear and Rotational Motions
All physical quantities in linear and rotational motions show striking similarity.

Momentum
RotationalKineticKinetic Energy

Power
WorkWorkWork
TorqueForceForce

Acceleration
Speed

Angle     (Radian)DistanceLength of motion

Moment of InertiaMassMass
RotationalLinearQuantities

∫= dmrI 2

dt
dr

v =
dt
dθ

ω =

dt
dv

a =
dt

d ω
α =

maF = ατ I=
∫= f

i

x

x
FdxW

vFP ⋅= τω=P

2

2
1

mvK = 2

2
1

ωIK R =

L

M
θ

∫= f

i

dW
θ

θ
θτ

vmp = ωIL =


