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PHYS 1443 – Section 003
Lecture #18
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1. Torque and Vector Products
2. Rotational Kinetic Energy
3. Work, Power and Energy in Rotation
4. Angular Momentum 
5. Angular Momentum and Torque
6. Conservation of Angular Momentum
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Announcements
• 2nd term exam changes

– Problem #7, the correct answer is c, 0.6.
• è Those who answered b and c get credit

– Problem #21, there is no correct answer
• è All of you received credit for this problem

• Class average: 52.1 (term 1: 53)
– The two exams are identical in average
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Torque and Vector Product

The magnitude of torque given to the disk by the force F is

Let’s consider a disk fixed onto the origin O and 
the force F exerts on the point p. What happens?

φτ sinFr=

BAC ×≡

The disk will start rotating counter clockwise about the Z axis

The above quantity is called 
Vector product or Cross product

Fθ

τ=rxF

r p

But torque is a vector quantity, what is the direction? 
How is torque expressed mathematically? Fr ×≡τ
What is the direction? The direction of the torque follows the right-hand rule!!

What is the result of a vector product?
Another vector

What is another vector operation we’ve learned?

Scalar product θcosBABAC =⋅≡

Result? A scalar

θsinBABAC =×=
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Rotational Kinetic Energy
What do you think the kinetic energy of a rigid object 
that is undergoing a circular motion is? 

Since a rigid body is a collection of masslets, the total kinetic energy of the 
rigid object is

Since moment of Inertia, I, is defined as

Kinetic energy of a masslet, mi, 
moving at a tangential speed, vi, is

ri

mi

θ

O x

y vi

iK
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i
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2= ωIKR 2
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The above expression is simplified as
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Total Kinetic Energy of a Rolling Body

Where, IP, is the moment of 
inertia about the point P.

Since it is a rotational motion about the point 
P, we can write the total kinetic energy

Since vCM=Rω, the above 
relationship can be rewritten as

2

2
1

ωPIK =

What do you think the total kinetic 
energy of the rolling cylinder is?

P

P’

CM
vCM

2vCM

Using the parallel axis theorem, we can rewrite

K

22

2
1

2
1

CMCM MvIK += ω

What does this equation mean? Rotational kinetic 
energy about the CM

Translational Kinetic 
energy of the CM

Total kinetic energy of a rolling motion is the sum 
of the rotational kinetic energy about the CM And the translational 

kinetic of the CM

2

2
1

ωPI= ( ) 22

2
1

ωMRICM += 222

2
1

2
1

ωω MRICM +=
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Kinetic Energy of a Rolling Sphere

Since vCM=Rω

Let’s consider a sphere with radius R 
rolling down a hill without slipping.

=K

R

xh

θ
vCM

ω

2
2

2
1

2
1

CM
CM

CM Mv
R

v
I +






=

Since the kinetic energy at the bottom of the hill must 
be equal to the potential energy at the top of the hill

What is the speed of the 
CM in terms of known 
quantities and how do you 
find this out?

K

2
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1
CM

CM vM
R
I
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

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Example for Rolling Kinetic Energy
For solid sphere as shown in the figure, calculate the linear speed of the CM at the 
bottom of the hill and the magnitude of linear acceleration of the CM.

=CMI

The moment of inertia the 
sphere with respect to the CM!!

Since h=xsinθ, 
one obtains

Thus using the formula in the previous slide

What must we know first?R

x
h

θ
vCM

ω

2/1
2

MRI
gh

v
CM

CM +
=

θsin
7

102 gxvCM = Using kinematic
relationship

xav CMCM 22 =

The linear acceleration 
of the CM is θsin

7
5

2

2

g
x

v
a CM

CM ==
What do you see?

Linear acceleration of a sphere does 
not depend on anything but g and θ.

5/21
2
+

=
gh

gh
7

10
=

=∫ dmr 2 2

5
2
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Example for Rolling Kinetic Energy
For solid sphere as shown in the figure, calculate the linear speed of the CM at the 
bottom of the hill and the magnitude of linear acceleration of the CM.  Solve this problem 
using Newton’s second law, the dynamic method.

∑ xF

Gravitational Force,

Since the forces Mg and n go through the CM, their moment arm is 0 
and do not contribute to torque, while the static friction f causes torque

M
xh

θ

αRaCM =

CMτ

We know that  

What are the forces involved in this motion?

Mg

f

Newton’s second law applied to the CM gives

Frictional Force, Normal Force
n

x

y

2

5
2

MRICM =

We 
obtain 

f

Substituting f in 
dynamic equations CMMaMg

5
7

sin =θ

fMg −= θsin CMMa=

∑ yF θcosMgn −= 0=

fR= αCMI=

R
ICMα

= 





=

R
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R
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Work, Power, and Energy in Rotation
Let’s consider a motion of a rigid body with a single external 
force F exerting on the point P, moving the object by ds.
The work done by the force F as the object rotates 
through the infinitesimal distance ds=rdθ is 

What is Fsinφ? The tangential component of force F.

dW

Since the magnitude of torque is rFsinφ,

F
φ

O

rdθ
ds

What is the work done by 
radial component Fcosφ?

Zero, because it is perpendicular to the 
displacement.

dW

The rate of work, or power becomes P How was the power 
defined in linear motion?

The rotational work done by an external force 
equals the change in rotational energy. ∑τ

The work put in by the external force then dW

sdF ⋅= ( ) θφ rdF sin=

θτd=

dt
dW

=
dt
dθτ

= τω=
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
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

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I
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
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
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θ
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Angular Momentum of a Particle
If you grab onto a pole while running, your body will rotate about the pole, gaining 
angular momentum.   We’ve used linear momentum to solve physical problems 
with linear motions, angular momentum will do the same for rotational motions.

φsinmvrL =

Let’s consider a point-like object ( particle) with mass m located 
at the vector location r and moving with linear velocity v

prL ×≡
The instantaneous angular momentum 
L of this particle relative to origin O is 

What do you learn from this? If the direction of linear velocity points to the origin of 
rotation, the particle does not have any angular momentum.

What is the unit and dimension of angular momentum? 22 / smkg⋅

Note that L depends on origin O. Why? Because r changes

The direction of L is +zWhat else do you learn? 

Since p is mv, the magnitude of L becomes

If the linear velocity is perpendicular to position vector, the 
particle moves exactly the same way as a point on a rim.

][ 22 −TML
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Angular Momentum and Torque

Total external forces exerting on a particle is the same as the change of its linear momentum.

Can you remember how net force exerting on a particle 
and the change of its linear momentum are related?

∑ τ

Thus the torque-angular 
momentum relationship

The same analogy works in rotational motion between torque and angular momentum. 

Net torque acting on a particle is 

The net torque acting on a particle is the same as the time rate change of its angular momentum

dt
pd

F =∑

dt
Ld

dt
Ld

=∑ τ
x

y

z

O

pφ

L=rxp

r m Why does this work? Because v is parallel to 
the linear momentum

( )
dt

prd ×=
dt

pdrp
dt

rd ×+×=
dt

pdr ×+= 0

∑×= Fr
dt

pd
r ×=
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Angular Momentum of a System of Particles
The total angular momentum of a system of particles about some point 
is the vector sum of the angular momenta of the individual particles

i
n LLLLL ∑=+++= ......21

Since the individual angular momentum can change, the total 
angular momentum of the system can change.

dt
Ld

ext =∑ τ
Thus the time rate change of the angular momentum of a 
system of particles is equal to the net external torque 
acting on the system

Let’s consider a two particle 
system where the two exert 
forces on each other.

Since these forces are action and reaction forces with 
directions lie on the line connecting the two particles, the 
vector sum of the torque from these two becomes 0.

Both internal and external forces can provide torque to individual particles.  
However, the internal forces do not generate net torque due to Newton’s third law.
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Example for Angular Momentum
A particle of mass m is moving in the xy plane in a circular path of radius r and linear 
velocity v about the origin O.  Find the magnitude and direction of angular momentum 
with respect to O.

r

x

y v

O

L

Using the definition of angular momentum

Since both the vectors, r and v, are on x-y plane and 
using right-hand rule, the direction of the angular 
momentum vector is +z (coming out of the screen)

The magnitude of the angular momentum is L

So the angular momentum vector can be expressed as kmrvL =

Find the angular momentum in terms of angular velocity ω.

L

Using the relationship between linear and angular speed 

pr ×= vmr ×= vrm ×=

vrm ×= φsinmrv= o90sinmrv= mrv=

kmrv= kmr ω2= ω2mr= ωI=
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Angular Momentum of a Rotating Rigid Body
Let’s consider a rigid body rotating about a fixed axis

iiii vrmL =

Each particle of the object rotates in the xy plane about the z-
axis at the same angular speed, ω

ατ I
dt

dLz
ext ==∑Thus the torque-angular momentum 

relationship becomes

What do 
you see?

Since I is constant for a rigid body

Magnitude of the angular momentum of a particle of mass mi
about origin O is miviri

x

y

z

O

pφ

L=rxp

r m

Summing over all particle’s angular momentum about z axis

∑=
i

iz LL ( )ω∑=
i

iiz rmL 2

dt
dL z α is angular 

acceleration

Thus the net external torque acting on a rigid body rotating about a fixed axis is equal to the moment 
of inertia about that axis multiplied by the object’s angular acceleration with respect to that axis.

ω2
ii rm=

( )∑=
i

ii rm ω2 ωI=

dt
d

I
ω

= αI=
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Example for Rigid Body Angular Momentum
A rigid rod of mass M and length l pivoted without friction at its center.  Two particles of mass 
m1 and m2 are connected to its ends.  The combination rotates in a vertical plane with an 
angular speed of ω. Find an expression for the magnitude of the angular momentum.

I

The moment of inertia of this system is

α

First compute net 
external torque

θτ cos
21
l

gm=1

m1 g

x

y

O

l

m1

m2

θ m2 g

If m1 = m2, no angular 
momentum because net 
torque is 0. 
If θ=+/−π/2, at equilibrium 
so no angular momentum.







 ++== 21

2

3
1

4
mmM

l
IL

ω
ω

Find an expression for the magnitude of the angular acceleration of the 
system when the rod makes an angle θ with the horizon.

2τττ += 1ext

Thus α 
becomes

21 mmrod III ++= 2
2
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Conservation of Angular Momentum
Remember under what condition the linear momentum is conserved?

Linear momentum is conserved when the net external force is 0.










=

=

+=+

fi

fi

ffii

LL

pp

UKUKThree important conservation laws 
for isolated system that does not get 
affected by external forces

Angular momentum of the system before and 
after a certain change is the same.

By the same token, the angular momentum of a system 
is constant in both magnitude and direction, if the 
resultant external torque acting on the system is 0. 

constant== fi LL

constp =

=∑ extτ

What does this mean?

Mechanical Energy

Linear Momentum

Angular Momentum

constL =

dt
pd

F ==∑ 0

=
dt

Ld
0
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Example for Angular Momentum Conservation
A star rotates with a period of 30days about an axis through its center.  After the star 

undergoes a supernova explosion, the stellar core, which had a radius of 1.0x104km, collapses 
into a neutron start of radius 3.0km.  Determine the period of rotation of the neutron star.  

T
π

ω
2

=

What is your guess about the answer? The period will be significantly shorter, 
because its radius got smaller.

fi LL =

Let’s make some assumptions: 1. There is no torque acting on it
2. The shape remains spherical
3. Its mass remains constant

The angular speed of the star with the period T is

Using angular momentum 
conservation

Thus fω

ffi II ωω ι =

f

i

I
I ιω

=
if

i

Tmr
mr π2

2

2

=

fT
fω

π2
=

i
i

f T
r

r










= 2

2

days30
100.1
0.3

2

4 ×







×
= days6107.2 −×= s23.0=
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Similarity Between Linear and Rotational Motions
All physical quantities in linear and rotational motions show striking similarity.

Momentum
RotationalKineticKinetic Energy

Power
WorkWorkWork
TorqueForceForce

Acceleration
Speed

Angle     (Radian)DistanceLength of motion

Moment of InertiaMassMass
RotationalLinearQuantities

∫= dmrI 2

dt
dr

v =
dt
d θ

ω =

dt
dv

a =
dt
d ω

α =

maF = ατ I=
∫= f

i

x

x
FdxW

vFP ⋅= τω=P

2

2
1

mvK = 2

2
1

ωIK R =

L

M
θ

∫= f

i

dW
θ

θ
θτ

vmp = ωIL =


