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PHYS 1443 – Section 003
Lecture #22

Monday, Nov. 24, 2003
Dr. Jaehoon Yu

1. Simple Block-Spring System
2. Energy of the Simple Harmonic Oscillator
3. Pendulum

• Simple Pendulum
• Physical Pendulum
• Torsion Pendulum

4. Simple Harmonic Motion and Uniform Circular Motion
5. Damped Oscillation
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Announcements
• Evaluation today
• Quiz

– Average: 3.5/6
– Marked improvements!  Keep up the good work!!

• Homework # 12
– Will be posted tomorrow
– Due at noon, Wednesday, Dec. 3

• The final exam
– On Monday, Dec. 8, in the class tentatively
– Covers: Chap. 10 not covered in Term #2 – whatever we get at by Dec. 3 

(chapter 15??)
• Need to talk to me?  I will be around tomorrow.  Come by my office! 

But please call me first!

No class Wednesday!  Have a safe and happy Thanksgiving!
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Simple Block-Spring System

Does this solution satisfy the differential equation?

A block attached at the end of a spring on a frictionless surface experiences 
acceleration when the spring is displaced from an equilibrium position.

This becomes a second 
order differential equation

( )φω += tAx cos

Let’s take derivatives with respect to time

x
m
ka −=

x
m
k

dt
xd

−=2

2 If we 
denote m

k
=2ω

The resulting differential equation becomes x
dt

xd 2−= ω2

2

Since this satisfies condition for simple 
harmonic motion, we can take the solution

dt
dx

Now the second order derivative becomes

2

2

dt
xd

Whenever the force acting on a particle is linearly proportional to the displacement from some 
equilibrium position and is in the opposite direction, the particle moves in simple harmonic motion.

( )( )φω += t
dt
dA cos ( )φωω +Α−= tsin

( )( )φωω +Α−= t
dt
d sin ( )φωω +Α−= tcos2 x2ω−=

springF ma=

kx= −
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More Simple Block-Spring System

Special case #1

How do the period and frequency of this harmonic motion look?

Since the angular frequency ω is

Let’s consider that the spring is stretched to distance A and the block is let 
go from rest, giving 0 initial speed; xi=A, vi=0, 

The period, T, becomes

ω

So the frequency is 

•Frequency and period do not 
depend on amplitude
•Period is inversely proportional 
to spring constant and 
proportional to mass

v a

This equation of motion satisfies all the conditions.  So it is the solution for this motion.

T
f

What can we learn from these?

tx ωcosΑ= ia

Special case #2 Suppose block is given non-zero initial velocity vi to positive x at the 
instant it is at the equilibrium, xi=0

φ x
Is this a good 
solution?

m
k

=

ω
π2

=
k
mπ2=

T
1

=
π
ω
2

=
m
k

π2
1

=

dt
dx

= tωω sinΑ−= 2

2

dt
xd

= tωω cos2Α−= Α−= 2ω mkA/−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= −

i

i

x
v
ω

1tan ( )∞−= −1tan
2

−=
π

⎟
⎠
⎞

⎜
⎝
⎛

2
−Α=
πωtcos ( )tA ωsin=
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Example for Spring Block System
A car with a mass of 1300kg is constructed so that its frame is supported by four 
springs.  Each spring has a force constant of 20,000N/m.  If two people riding in the 
car have a combined mass of 160kg, find the frequency of vibration of the car after it 
is driven over a pothole in the road.

Let’s assume that mass is evenly distributed to all four springs. 

Thus the frequency for 
vibration of each spring is 

The total mass of the system is 1460kg.
Therefore each spring supports 365kg each.

From the frequency relationship 
based on Hook’s law f

Hzs
m
kf 18.118.1

365
20000

2
1

2
1 1 ==== −

ππ

How long does it take for the car to complete two full vibrations?

The period is s
k
m

f
T 849.021

=== π For two cycles sT 70.12 =

T
1

=
π
ω
2

=
m
k

π2
1

=
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Example for Spring Block System
A block with a mass of 200g is connected to a light spring for which the force constant is 
5.00 N/m and is free to oscillate on a horizontal, frictionless surface.  The block is displaced 
5.00 cm from equilibrium and released from reset.  Find the period of its motion.

From the Hook’s law, we obtain 

From the general expression of the 
simple harmonic motion, the speed is 

X=0
X=0.05

ω
As we know, period does not depend on the 
amplitude or phase constant of the oscillation, 
therefore the period, T, is simply

T
Determine the maximum speed of the block.

maxv
dt
dx

= ( )φωω +−= tA sin

Aω= sm /25.005.000.5 =×=

ω
π2

= s26.1
00.5

2
==

π

m
k

= 100.5
20.0
00.5 −== s
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Energy of the Simple Harmonic Oscillator
How do you think the mechanical energy of the harmonic oscillator look without friction?
Kinetic energy of a 
harmonic oscillator is

The elastic potential energy stored in the spring
Therefore the total 
mechanical energy of the 
harmonic oscillator is 

KE

PE
E

E

Total mechanical energy of a simple harmonic oscillator is a constant of 
a motion and is proportional to the square of the amplitude 

Maximum KE 
is when PE=0 maxKE

Since m
k=ω

One can obtain speed E

2

2
1 mv= ( )φωω +Α= tm 222 sin

2
1

2

2
1 kx= ( )φω +Α= tk 22 cos

2
1

PEKE+= ( ) ( )[ ]φωφωω +Α++Α= tktm 22222 cossin
2
1

PEKE += ( ) ( )[ ]φωφω +Α++Α= tktk 2222 cossin
2
1 2

2
1 kA=

2
max2

1 mv= ( )φωω +Α= tm 222 sin
2
1 22

2
1

Α= ωm 2

2
1

Α= k

PEKE += 22

2
1

2
1 kxmv += 2

2
1

Α= k

v ( )22 xAmk −+= 22 xA −+= ω xA-A

KE/PE E=KE+PE=kA2/2
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Example for Energy of Simple Harmonic Oscillator
A 0.500kg cube connected to a light spring for which the force constant is 20.0 N/m oscillates on a 
horizontal, frictionless track.  a) Calculate the total energy of the system and the maximum speed 
of the cube if the amplitude of the motion is 3.00 cm.

The total energy of 
the cube is E

From the problem statement, A and k are mNk /0.20=

Maximum speed occurs when kinetic 
energy is the same as the total energy

2
maxmax 2

1 mvKE =

b) What is the velocity of the cube when the displacement is 2.00 cm.
velocity at any given 
displacement is

v
c) Compute the kinetic and potential energies of the system when the displacement is 2.00 cm.

Kinetic 
energy, KE

KE
Potential 
energy, PE PE

mcmA 03.000.3 ==

PEKE += 2

2
1 kA= ( ) ( ) J32 1000.903.00.20

2
1 −×=×=

E= 2

2
1 kA=

maxv
m
kA= sm /190.0

500.0
0.2003.0 ==

( )22 xAmk −= ( ) sm/141.0500.0/02.003.00.20 22 =−⋅=

2

2
1 mv= ( ) J32 1097.4141.0500.0

2
1 −×=×= 2

2
1 kx= ( ) J32 1000.402.00.20

2
1 −×=×=
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The Pendulum
A simple pendulum also performs periodic motion.

The net force exerted on the bob is 
∑ rF

s Lθ=

Again became a second degree differential equation, 
satisfying conditions for simple harmonic motion

If θ is very small, sinθ~θ

Since the arc length, s, is  

2

2

dt
sd

2

2

dt
d θresults

mg
m

θ
L

T

s

2

2

dt
d θ

L
g

=ωgiving angular frequency

The period for this motion is T The period only depends on the 
length of the string and the 
gravitational acceleration

AmgT θcos−= 0=

∑ tF Amg θsin−= ma=
2

2

dt
sdm=

2

2

dt
dL θ

= θsing−= θsin
L
g

−=

θ
L
g

−= θω 2−=

ω
π2

=
g
Lπ2=



Monday, Nov. 24, 2003 PHYS 1443-003, Fall 2003
Dr. Jaehoon Yu

10

Example for Pendulum
Christian Huygens (1629-1695), the greatest clock maker in history, suggested that an 
international unit of length could be defined as the length of a simple pendulum having a 
period of exactly 1s.  How much shorter would out length unit be had this suggestion 
been followed?

Since the period of a simple 
pendulum motion is T

The length of the pendulum 
in terms of T is 2

2

4π
gTL =

Thus the length of the 
pendulum when T=1s is mgTL 248.0

4
8.91

4 22

2

=
×

==
ππ

Therefore the difference in 
length with respect to the 
current definition of 1m is L∆

ω
π2

=
g
Lπ2=

L−= 1 m752.0248.01 =−=
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Physical Pendulum
Physical pendulum is an object that oscillates about a fixed 
axis which does not go through the object’s center of mass.

Therefore, one can rewrite

Thus, the angular frequency ω is

The magnitude of the net torque provided by the gravity is  
∑τ

I
mgd

=ω

And the period for this motion is
mgd

IT π
ω
π 22

==

By measuring the period of 
physical pendulum, one can 
measure moment of inertia.

O

CM
d

dsinθ
θ

mg

Consider a rigid body pivoted at a point O that is a distance d from the CM.

∑τThen 

2

2

dt
d θ

Does this work for 
simple pendulum?

θsinmgd−=

αI= 2

2

dt
dI θ

= θsinmgd−=

θsin
I

mgd
−= θ⎟

⎠
⎞

⎜
⎝
⎛−≈

I
mgd

θω 2−=
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Example for Physical Pendulum
A uniform rod of mass M and length L is pivoted about one end and oscillates in a vertical 
plane.  Find the period of oscillation if the amplitude of the motion is small.

Moment of inertia of a uniform rod, 
rotating about the axis at one end is

Since L=1m, 
the period is

L

O
Pivot

CM

Mg

2

3
1 MLI =

The distance d from the pivot to the CM is L/2, 
therefore the period of this physical pendulum is

T

Calculate the period of a meter stick that is pivot about one end and is oscillating in 
a vertical plane.

s
g
LT 64.1

8.93
22

3
22 =

⋅
== ππ So the 

frequency is
161.01 −== s

T
f

ω
π2

=
Mgd

Iπ2=
MgL
ML

3
22

2

π=
g
L

3
22π=
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Torsion Pendulum
When a rigid body is suspended by a wire to a fixed support at the top and the 
body is twisted through some small angle θ, the twisted wire can exert a restoring 
torque on the body that is proportional to the angular displacement.

Applying the Newton’s second 
law of rotational motion

Thus, the angular frequency ω is

The torque acting on the body due to the wire is  

τ

I
κω =

And the period for this motion is T

This result works as 
long as the elastic limit 
of the wire is not 
exceeded

∑τ

κ is the torsion 
constant of the wire 

2

2

dt
d θ

O

P
θmax

Then, again the equation becomes

κθ−=
αI= 2

2

dt
dI θ

= κθ−=

θκ
⎟
⎠
⎞

⎜
⎝
⎛−=

I θω2−=

ω
π2

=
κ

π I2=



Monday, Nov. 24, 2003 PHYS 1443-003, Fall 2003
Dr. Jaehoon Yu

14

Simple Harmonic and Uniform Circular Motions
Uniform circular motion can be understood as a 
superposition of two simple harmonic motions in x and y axis.

When the particle rotates at a uniform angular 
speed ω, x and y coordinate position become

Since the linear velocity in a uniform circular 
motion is Aω, the velocity components are

x
t=0

x

y

O

P
φ

A

x

y

O

P

θ
A

Q

ω

x
y

t=t θ=ωt+φ

x

y

O

P

θ
A

Q

v

vx

xv

x

y

O

P

θ
A

Q

a

ax

Since the radial acceleration in a uniform circular 
motion is v2/A=ω2Α, the components are

xa

θcosA= ( )φω += tA cos
y θsinA= ( )φω += tA sin

θsinv−= ( )φωω +−= tA sin

yv θcosv+= ( )φωω += tA cos

θcosa−= ( )φωω +−= tA cos2

ya θsina−= ( )φωω +−= tA sin2
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Example for Uniform Circular Motion
A particle rotates counterclockwise in a circle of radius 3.00m with a constant angular 
speed of 8.00 rad/s.  At t=0, the particle has an x coordinate of 2.00m and is moving to 
the right.   A) Determine the x coordinate as a function of time.

Since the radius is 3.00m, the amplitude of oscillation in x direction is 3.00m.  And the 
angular frequency is 8.00rad/s.  Therefore the equation of motion in x direction is

Since x=2.00, when t=0

However, since the particle was 
moving to the right φ=-48.2o, 

Using the 
displcement

x
( )2.00 3.00 cos ;m φ=

( ) ( )2.4800.8cos00.3 −= tmx
Find the x components of the particle’s velocity and acceleration at any time t.

xv

Likewise, 
from velocity xa

θcosA= ( ) ( )φ+= tm 00.8cos00.3

2.48
00.3
00.2cos 1 =⎟

⎠
⎞

⎜
⎝
⎛= −φ

dt
dx

= ( ) ( ) ( ) ( )2.4800.8sin/0.242.4800.8sin00.800.3 −−=−⋅−= tsmt

dt
dv

= ( ) ( ) ( ) ( )2.4800.8cos/1922.4800.8cos00.80.24 2 −−=−⋅−= tsmt


