PHYS 1443 – Section 003 Lecture #1

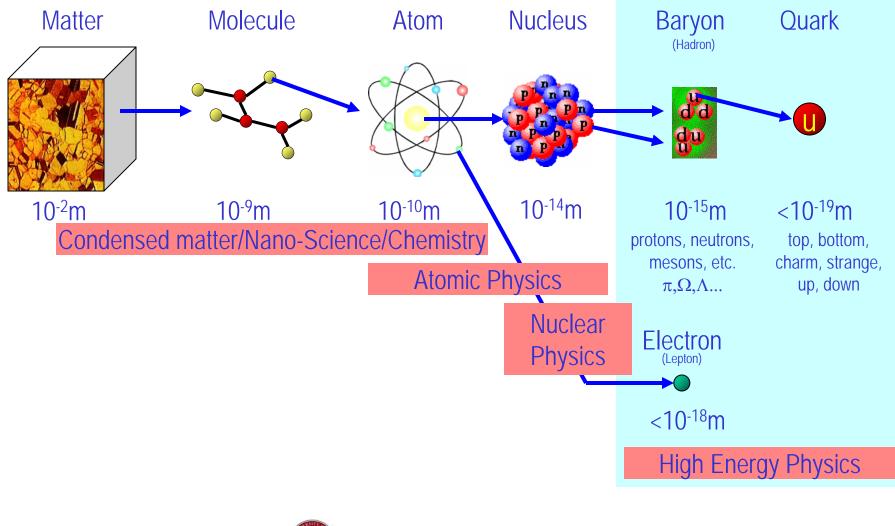
Monday, Aug. 23, 2003 Dr. Jaehoon Yu

- Who am I?
- How is this class organized?
- What is Physics?
- What do we want from this class?
- Brief history of physics
- Chapter one
 - Standards and units
 - Unit Conversions
 - Estimates and Order of Magnitudes
 - Dimensional Analysis
 - Uncertainties and significant figures

Today's homework is homework #1, due 1pm, next Wednesday!! 1

Announcements

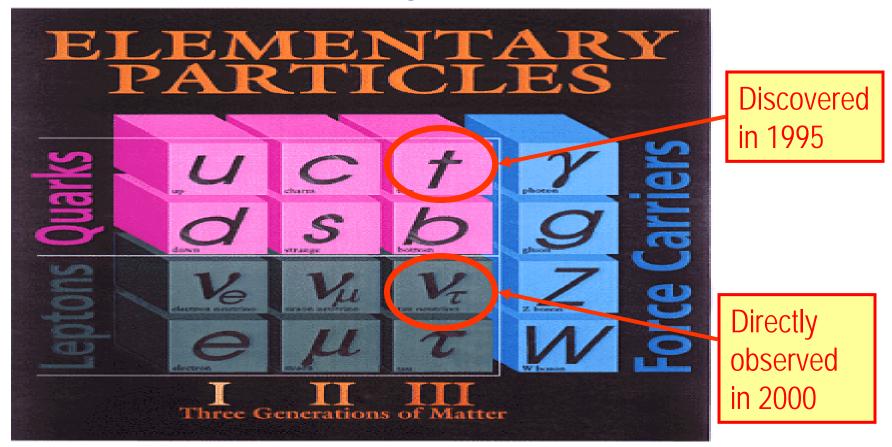
- Reading assignment #1: Read and follow through all sections in appendix A and B by Wednesday, Sept. 1
 - A-1 through A-8 and B-1 through B4
- There will be a quiz on Wednesday, Sept. 1, on this reading assignment.
- This coming and the week after next Wednesday's classes will be given by substitutes due to my travel schedule.



Who am I?

- Name: Dr. Jaehoon Yu (You can call me Dr. Yu)
- Office: Rm 242A, Science Hall
- Extension: x22814, E-mail: jaehoonyu@uta.edu
- My profession: High Energy Physics (HEP)
 - Collide particles (protons on anti-protons or electrons on anti-electrons, positrons) at the energies equivalent to 10,000 Trillion degrees
 - To understand
 - Fundamental constituents of matter
 - Interactions or forces between the constituents
 - Origin of Mass
 - Creation of Universe (Big Bang Theory)
 - A pure scientific research activity
 - Direct use of the fundamental laws we find may take longer than we want but
 - Indirect product of research contribute to every day lives; eg. WWW

Structure of Matter

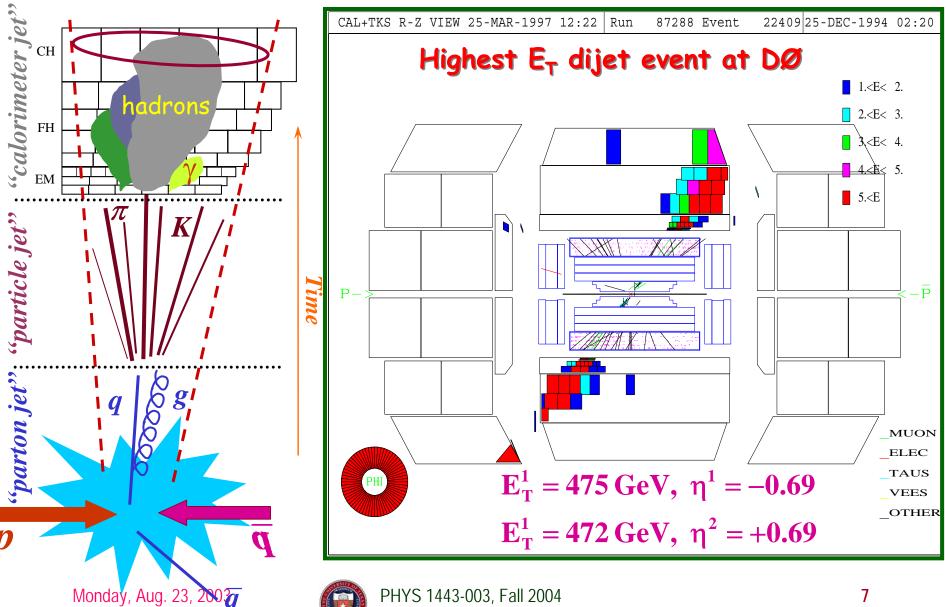


Monday, Aug. 23, 2003

The Standard Model

• Assumes the following fundamental structure:

Monday, Aug. 23, 2003


DØ Experiment at Fermilab Tevatron World's Highest Energy proton-anti-proton collider

- - E_{cm} =1.96 TeV (=6.3x10⁻⁷J/p→ 13M Joules on 10⁻⁶m²)

 \Rightarrow Equivalent to the kinetic energy of a 20t truck at a speed 80 mi/hr

How does an Event Look in a Collider Detector?

Dr. Jaehoon Yu

Information & Communication Source

- My web page: <u>http://www-hep.uta.edu/~yu/</u>
 - Contact information & Class Schedule
 - Syllabus
 - Homework
 - Holidays and Exam days
 - Evaluation Policy
 - Class Style & Communication
 - Other information
- Primary communication tool is e-mail: Register for <u>PHYS1443-</u> <u>003-FALL04 e-mail distribution list</u> as soon possible → Instruction available in Class style & Communication
 - 5 points extra credit if done by next Monday, Aug. 30
 - 3 points extra credit if done by next Wednesday, Sept. 1
- Office Hours: 2:30 3:30pm, Mondays and Wednesdays or by appointments

Monday, Aug. 23, 2003

Evaluation Policy

- Term Exams: 45%
 - Total of three term exams (9/27, 11/1 & 12/8)
 - Best two of the three will be used for the final grade
 - Each will constitute 22.5% of the total
 - Missing an exam is not permissible unless pre-approved
 - No makeup test
 - You will get an F if you miss any of the exams without a prior approval
- Lab score: 20%
- Homework: 20%
- 100% Pop-quizzes: 15%
 - Extra credits: 10% of the total
 - Random attendances
 - Strong participation in the class discussions
 - Other many opportunities
 - Will be on sliding scale unless everyone does very well

Homeworks

- Solving homework problems is the only way to comprehend class material
- An electronic homework system has been setup for you
 - Details are in the material distributed today and on the web
 - <u>https://hw.utexas.edu/studentInstructions.html</u>
 - Download homework #1 (1 problem), attempt to solve it, and submit it → You will receive a 100% credit for HW#1
 - Roster will close next Wednesday, Sept. 1
- Each homework carries the same weight
- The worst one of the homework scores will be dropped
- Home work will constitute <u>20% of the total</u> → A good way of keeping your grades high
- Strongly encouraged to collaborate → Does not mean you can copy

Attendances and Class Style

- Attendances:
 - Will be taken randomly
 - Will be used for extra credits
- Class style:
 - Lectures will be on electronic media
 - The lecture notes will be posted on the web <u>AFTER</u> each class
 - Will be mixed with traditional methods
 - Active participation through questions and discussions are
 <u>STRONGLY</u> encouraged → Extra credit....

Why do Physics?

Exp. **•** To understand nature through experimental observations and measurements (**Research**) Theory Establish limited number of fundamental laws, usually with mathematical expressions Predict the nature's course \Rightarrow Theory and Experiment work hand-in-hand \Rightarrow Theory works generally under restricted conditions \Rightarrow Discrepancies between experimental measurements and theory are good for improvements \Rightarrow Improves our everyday lives, though some laws can take a while till we see amongst us

Models, Theories and Laws

- Models: A kind of analogy or mental image of a phenomena in terms of something we are familiar with
 - Often provides insights for new experiments and ideas
- Theories: More systematically improved version of models
 - Can provide quantitative predictions that are testable and more precise
- Laws: Certain concise but general statements about how nature behaves → The statement must be found experimentally valid
- Principles: Less general statements of how nature behaves
 - Has some level of arbitrariness

What do we want from this class?

- Physics is everywhere around you.
- Understand the fundamental principles that surrounds you in everyday lives...
- Identify what law of physics applies to what phenomena and use them appropriately
- Understand the impact of such physical laws
- Learn how to research and analyze what you observe.
- Learn how to express observations and measurements in mathematical languages.
- Learn how to express your research in systematic manner in writing
- I don't want you to be scared of PHYSICS!!!

Most of importantly, let us to have a lot of FUN!!

Brief History of Physics

- AD 18th century:
 - Newton's Classical Mechanics: A theory of mechanics based on observations and measurements
- AD 19th Century:
 - Electricity, Magnetism, and Thermodynamics
- Late AD 19th and early 20th century (Modern Physics Era)
 - Einstein's theory of relativity: Generalized theory of space, time, and energy (mechanics)
 - Quantum Mechanics: Theory of atomic phenomena
- Physics has come very far, very fast, and is still progressing, yet we've got a long way to go
 - What is matter made of?
 - How do matters get mass?
 - How and why do matters interact with each other?
 - How is universe created?

Needs for Standards and Units

- Three basic quantities for physical measurements
 - Length, Mass, and Time
- Need a language that everyone can understand each other
 - Consistency is crucial for physical measurements
 - The same quantity measured by one must be comprehendible and reproducible by others
 - Practical matters contribute
- A system of unit called <u>SI</u> (*System International*) established in 1960
 - Length in meters (m)
 - Mass in kilo-grams (kg)
 - Time in seconds (s)

Definition of Base Units

SI Units	Definitions	
1 m (Length) = 100 cm	One meter is the length of the path traveled by light in vacuum during a time interval of <u>1/299,792,458 of</u> <u>a second</u> .	
1 kg (Mass) = 1000 g	It is equal to the mass of the international prototype of the kilogram, made of platinum-iridium in International Bureau of Weights and Measure in France.	
1 <i>s (Time)</i>	One second is the <u>duration of 9,192,631,770</u> <u>periods of the radiation</u> corresponding to the transition between the two hyperfine levels of the ground state of the Cesium 133 (C ¹³³) atom.	

There are prefixes that scales the units larger or smaller for convenience (see pg. 7)
Units for other quantities, such as Kelvins for temperature, for easiness of use

Prefixes, expressions and their meanings

- deca (da): 10¹
- hecto (h): 10²
- kilo (k): 10³
- mega (M): 10⁶
- giga (G): 10⁹
- tera (T): 10¹²
- peta (P): 10¹⁵
- exa (E): 10¹⁸

- deci (d): 10⁻¹
- centi (c): 10⁻²
- milli (m): 10⁻³
- micro (μ): 10⁻⁶
- nano (n): 10⁻⁹
- pico (p): 10⁻¹²
- femto (f): 10⁻¹⁵
- atto (a): 10⁻¹⁸

International Standard Institutes

- International Bureau of Weights and Measure <u>http://www.bipm.fr/</u>
 - Base unit definitions: <u>http://www.bipm.fr/enus/3_SI/base_units.html</u>
 - Unit Conversions: <u>http://www.bipm.fr/enus/3_SI/</u>
- US National Institute of Standards and Technology (NIST) <u>http://www.nist.gov/</u>

How do we convert quantities from one unit to another?

Unit 1 = Conversion factor X Unit 2

1 inch	2.54	ст
1 inch	0.0254	m
1 inch	2.54x10 ⁻⁵	km
1 ft	30.3	cm
1 ft	0.303	М
1 ft	3.03x10 ⁻⁴	km
1 hr	60	minutes
1 hr	3600	seconds
And many	More	Here

Monday, Aug. 23, 2003

Examples 1.3 and 1.4 for Unit Conversions

Ex 1.3: A silicon chip has an area of 1.25in². Express this in cm².

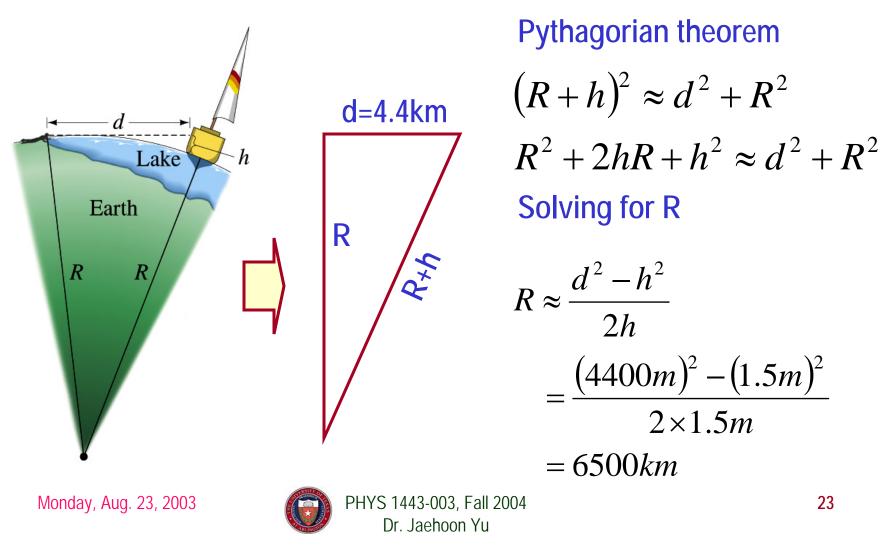
What do we need to know?

1.25 in² = 1.25 in² ×
$$\left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right)^2$$

= 1.25 in² × $\left(\frac{6.45 \text{ cm}^2}{1 \text{ in}^2}\right)$

$$=1.25 \times 6.45 \text{ cm}^2 = 8.06 \text{ cm}^2$$

• Ex 1.4: Where the posted speed limit is 65 miles per hour (mi/h or mph), what is this speed (a) in meters per second (m/s) and (b) kilometers per hour (km/h)? 1 mi= $(5280 \text{ ft})\left(\frac{12 \text{ in}}{1 \text{ ft}}\right)\left(\frac{2.54 \text{ cm}}{1 \text{ in}}\right)\left(\frac{1 \text{ m}}{100 \text{ cm}}\right)=1609 \text{ m}=1.609 \text{ km}$ (a) 65 mi/h = $(65 \text{ mi})\left(\frac{1609 \text{ m}}{1 \text{ mi}}\right)\left(\frac{1}{1 \text{ h}}\right)\left(\frac{1 \text{ h}}{3600 \text{ s}}\right)=29.1 \text{ m/s}$ (b) 65 mi/h = $(65 \text{ mi})\left(\frac{1.609 \text{ km}}{1 \text{ mi}}\right)\left(\frac{1}{1 \text{ h}}\right)=104 \text{ km/h}$ Monday, Aug. 23, 2003 PHYS 1443-003, Fall 2004 Dr. Jaehoon Yu 21


Estimates & Order-of-Magnitude Calculations

- Estimate = Approximation
 - Useful for rough calculations to determine the necessity of higher precision
 - Usually done under certain assumptions
 - Might require modification of assumptions, if higher precision is necessary
- Order of magnitude estimate: Estimates done to the precision of 10s or exponents of 10s;
 - Three orders of magnitude: $10^3 = 1,000$
 - Round up for Order of magnitude estimate; $8x10^7 \sim 10^8$
 - Similar terms: "Ball-park-figures", "guesstimates", etc

Example 1.8

Estimate the radius of the Earth using triangulation as shown in the picture when d=4.4km and h=1.5m.

