Phys 1443 – Section 003

Lecture #3

Monday, Aug. 30, 2004

Dr. Jaehoon Yu

1. One Dimensional Motion

 Average Velocity
 Acceleration
 Motion under constant acceleration
 Free Fall

2. Motion in Two Dimensions

 Vector Properties and Operations
 Motion under constant acceleration
 Projectile Motion
Announcements

• Homework: 38 of you have signed up (out of 43)
 – Roster will be locked at 5pm Wednesday
 – In order for you to obtain 100% on homework #1, you need to pickup the homework, attempt to solve it and submit it. 30 of you have done this.
 – Homework system deducts points for failed attempts.
 • So be careful when you input the answers
 • Input the answers to as many significant digits as possible
 – All homework problems are equally weighted

• e-mail distribution list:: 15 of you have subscribed so far.
 – This is the primary communication tool. So subscribe to it ASAP.
 – 5 extra credit points if done by midnight tonight and 3 by Wednesday.
 – A test message will be sent after the class today for verification purpose

• Physics Clinic (Supplementary Instructions, SH010): 12 – 6, M-F

• Labs begin today!!!
Difference between Speed and Velocity

- Let’s take a simple one dimensional translation that has many steps:

 Let’s call this line as X-axis

 Let’s have a couple of motions in a total time interval of 20 sec.

 +10m +15m +5m
 -5m -10m -15m

 Total Displacement: \(\Delta x \equiv x_f - x_i = x_i - x_f = 0(m) \)

 Average Velocity: \(v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t} = \frac{0}{20} = 0(m/s) \)

 Total Distance Traveled: \(D = 10 + 15 + 5 + 15 + 10 + 5 = 60(m) \)

 Average Speed: \(v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Time Interval}} = \frac{60}{20} = 3(m/s) \)
Example 2.1

The position of a runner as a function of time is plotted as moving along the x axis of a coordinate system. During a 3.00-s time interval, the runner’s position changes from $x_1=50.0 \text{ m}$ to $x_2=30.5 \text{ m}$, as shown in the figure. What was the runner’s average velocity? What was the average speed?

- **Displacement:**

 \[\Delta x \equiv x - x = x_2 - x_1 = 30.5 - 50.0 = -19.5 \text{ (m)} \]

- **Average Velocity:**

 \[v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t} = \frac{-19.5}{3.00} = -6.50 \text{ (m/s)} \]

- **Average Speed:**

 \[v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Time Interval}} \]

 \[= \frac{50.0 - 30.5}{3.00} = \frac{+19.5}{3.00} = +6.50 \text{ (m/s)} \]
Instantaneous Velocity and Speed

- Can average quantities tell you the detailed story of the whole motion?
- Instantaneous velocity is defined as:
 - What does this mean?
 - Displacement in an infinitesimal time interval
 - Mathematically: Slope of the position variation as a function of time

- Instantaneous speed is the size (magnitude) of the velocity vector:
Position vs Time Plot

It is helpful to understand motions to draw them on position vs time plots.

1. Running at a constant velocity (go from x=0 to x=x₁ in t₁, Displacement is + x₁ in t₁ time interval)
2. Velocity is 0 (go from x₁ to x₁ no matter how much time changes)
3. Running at a constant velocity but in the reverse direction as 1. (go from x₁ to x=0 in t₃-t₂ time interval, Displacement is - x₁ in t₃-t₂ time interval)

Does this motion physically make sense?
Instantaneous Velocity

Average Velocity

Time

Instantaneous Velocity
Example 2.3

A jet engine moves along a track. Its position as a function of time is given by the equation \(x = At^2 + B \) where \(A = 2.10\, \text{m/s}^2 \) and \(B = 2.80\, \text{m} \).

(a) Determine the displacement of the engine during the interval from \(t_1 = 3.00\, \text{s} \) to \(t_2 = 5.00\, \text{s} \).

\[
x_1 = x_{t_1 = 3.00} = 2.10 \times (3.00)^2 + 2.80 = 21.7\, \text{m}
\]

\[
x_2 = x_{t_2 = 5.00} = 2.10 \times (5.00)^2 + 2.80 = 55.3\, \text{m}
\]

Displacement is, therefore:

\[
\Delta x = x_2 - x_1 = 55.3 - 21.7 = +33.6\, (\text{m})
\]

(b) Determine the average velocity during this time interval.

\[
-v_x = \frac{\Delta x}{\Delta t} = \frac{33.6}{5.00 - 3.00} = \frac{33.6}{2.00} = 16.8\, (\text{m/s})
\]
Example 2.3 cont’d

(c) Determine the instantaneous velocity at \(t=t^2=5.00 \) s.

The derivative of the engine’s equation of motion is

\[
\frac{d}{dt} \left(C t^n \right) = n C t^{n-1}
\]

and

\[
\frac{d}{dt} (C) = 0
\]

The instantaneous velocity at \(t=5.00 \) s is

\[
v_x(t = 5.00 \text{s}) = 2A \times 5.00 = 2.10 \times 10.0 = 21.0 \text{ (m/s)}
\]
Displacement, Velocity and Speed

Displacement

$$\Delta x \equiv x_f - x_i$$

Average velocity

$$v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$$

Average speed

$$v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Time Spent}}$$

Instantaneous velocity

$$v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Instantaneous speed

$$|v_x| = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{|dx|}{dt}$$
Acceleration

Change of velocity in time (what kind of quantity is this?)

- **Average acceleration:**

\[
a_x \equiv \frac{v_{xf} - v_{xi}}{t_f - t_i} = \frac{\Delta v_x}{\Delta t}
\]

analog to

\[
v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}
\]

- **Instantaneous acceleration:**

\[
a_x \equiv \lim_{\Delta t \to 0} \frac{\Delta v_x}{\Delta t} = \frac{dv_x}{dt} = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2 x}{dt^2}
\]

analog to

\[
v_x \equiv \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}
\]

- In calculus terms: A slope (derivative) of velocity with respect to time or change of slopes of position as a function of time