PHYS 1443 – Section 003 Lecture #3

Monday, Aug. 30, 2004 Dr. Jaehoon Yu

1. One Dimensional Motion

Average Velocity Acceleration Motion under constant acceleration Free Fall

2. Motion in Two Dimensions

Vector Properties and Operations Motion under constant acceleration Projectile Motion

Announcements

- Homework: 38 of you have signed up (out of 43)
 - Roster will be locked at 5pm Wednesday
 - In order for you to obtain 100% on homework #1, you need to pickup the homework, attempt to solve it and submit it. → 30 of you have done this.
 - Homework system deducts points for failed attempts.
 - So be careful when you input the answers
 - Input the answers to as many significant digits as possible
 - All homework problems are equally weighted
- e-mail distribution list:: 15 of you have subscribed so far.
 - This is the primary communication tool. So subscribe to it ASAP.
 - 5 extra credit points if done by midnight tonight and 3 by Wednesday.
 - A test message will be sent after the class today for verification purpose
- Physics Clinic (Supplementary Instructions, SH010): 12 6, M-F
- Labs begin today!!!

Difference between Speed and Velocity

• Let's take a simple one dimensional translation that has many steps:

Let's call this line as X-axis

Dr. Jaehoon Yu

Example 2.1

The position of a runner as a function of time is plotted as moving along the x axis of a coordinate system. During a 3.00-s time interval, the runner's position changes from x_1 =50.0m to x_2 =30.5 m, as shown in the figure. What was the runner's average velocity? What was the average speed?

Instantaneous Velocity and Speed

- Can average quantities tell you the detailed story of the whole motion?
- Instantaneous velocity is defined as:
 - What does this mean?

$$v_x = \lim_{\substack{\lim \\ \dot{A}t \to 0}} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

- Displacement in an infinitesimal time interval
- Mathematically: Slope of the position variation as a function of time
- •Instantaneous speed is the size (magnitude) of the velocity vector: $\Delta x | dx |$ *Magnitude of Ve

$$|v_x| = \left| \lim_{\substack{\text{lim} \\ \text{Ät} \to 0}} \frac{\Delta x}{\Delta t} \right| = \left| \frac{dx}{dt} \right|$$

*Magnitude of Vectors are expressed in absolute values

Position vs Time Plot

Monday, Aug. 30, 2004

Instantaneous Velocity

Dr. Jaehoon Yu

Example 2.3

A jet engine moves along a track. Its position as a function of time is given by the equation $x=At^2+B$ where A=2.10m/s² and B=2.80m.

(a) Determine the displacement of the engine during the interval from $t_1=3.00s$ to $t_2=5.00s$. $x_1 = x_{t_1=3.00} = 2.10 \times (3.00)^2 + 2.80 = 21.7m$ $x_2 = x_{t_2=5.00} = 2.10 \times (5.00)^2 + 2.80 = 55.3m$

Displacement is, therefore:

$$\Delta x = x_2 - x_1 = 55.3 - 21.7 = +33.6(m)$$

(b) Determine the average velocity during this time interval.

$$\overline{v}_x = \frac{\Delta x}{\Delta t} = \frac{33.6}{5.00 - 3.00} = \frac{33.6}{2.00} = 16.8(m/s)$$

Monday, Aug. 30, 2004

Example 2.3 cont'd

(c) Determine the instantaneous velocity at $t=t^2=5.00s$.

Calculus formula for derivative

$$\frac{d}{dt}(Ct^n) = nCt^{n-1}$$
 and $\frac{d}{dt}(C) = 0$

The derivative of the engine's equation of motion is

 $v_x = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt} = \frac{d}{dt} \left(At^2 + B \right) = 2At$

The instantaneous velocity at t=5.00s is

$$v_x(t = 5.00s) = 2A \times 5.00 = 2.10 \times 10.0 = 21.0(m/s)$$

Monday, Aug. 30, 2004

9

Displacement, Velocity and Speed

Displacement

Average velocity

Average speed

$$\Delta x \equiv x_f - x_i$$

$$v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$$

 $v \equiv \frac{\text{Total Distance Traveled}}{\text{Total Time Spent}}$

Instantaneous velocity

$$v_x = \lim_{\substack{\lim \\ \dot{A}t \to 0}} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

$$\begin{vmatrix} v_x \end{vmatrix} = \begin{vmatrix} \Delta x \\ \lim_{\mathbf{At} \to \mathbf{0}} \frac{\Delta x}{\Delta t} \end{vmatrix} = \begin{vmatrix} dx \\ dt \end{vmatrix}$$

Instantaneous speed

Acceleration

Change of velocity in time (what kind of quantity is this?) •Average acceleration:

$$a_x \equiv \frac{v_{xf} - v_{xi}}{t_f - t_i} = \frac{\Delta v_x}{\Delta t}$$
 analogs to $v_x \equiv \frac{x_f - x_i}{t_f - t_i} = \frac{\Delta x}{\Delta t}$

Instantaneous acceleration:

$$a_{x} \equiv \lim_{\substack{\text{i i m} \\ \text{Ät} \to 0}} \frac{\Delta v_{x}}{\Delta t} = \frac{dv_{x}}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^{2}x}{dt^{2}} \text{ analogs to } v_{x} \equiv \lim_{\substack{\text{im} \\ \text{Ät} \to 0}} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

 In calculus terms: A slope (derivative) of velocity with respect to time or change of slopes of position as a function of time

