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Newton’s Law of Universal Gravitation
People have been very curious about stars in the sky, making 
observations for a long time.  But the data people collected have not 
been explained until Newton has discovered the law of gravitation. 

Every particle in the Universe attracts every other particle with a force 
that is directly proportional to the product of their masses and 
inversely proportional to the square of the distance between them.

How would you write this 
law mathematically? gF

1110673.6 −×=GG is the universal gravitational 
constant, and its value is

This constant is not given by the theory but must be measured by experiments.

With G gF =

Unit? 22 /kgmN ⋅

This form of forces is known as the inverse-square law, because the magnitude of the 
force is inversely proportional to the square of the distances between the objects.
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It means that the force exerted on the particle 2 by 
particle 1 is an attractive force, pulling #2 toward #1.

More on Law of Universal Gravitation
Consider two particles exerting gravitational forces to each other.

Gravitational force is a field force: Forces act on object without physical contact 
between the objects at all times, independent of medium between them.

122
21

12 r̂
r
mmGF −=

The gravitational force exerted by a finite size, spherically 
symmetric mass distribution on an object outside of it is 
the same as when the entire mass of the distributions is 
concentrated at the center of the object.

m1

m2

r

F21

F12

12r̂ Two objects exert gravitational force on each other 
following Newton’s 3rd law.

Taking         as the unit vector, we can 
write the force m2 experiences as

12r̂

What do you think the 
negative sign mean?

gF

What do you think the 
gravitational force on the 
surface of the earth look?
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Example for Gravitation
Using the fact that g=9.80m/s2 at the Earth’s surface, find the average density of the Earth.

g
Since the gravitational acceleration is 

G
gRM E

E

2
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Therefore the 
density of the 
Earth is  

ρ
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Solving for ME
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Free Fall Acceleration & Gravitational Force
Weight of an object with mass m is 
mg. Using the force exerting on a 
particle of mass m on the surface of 
the Earth, one can obtain

•The gravitational acceleration is independent of the mass of the object
•The gravitational acceleration decreases as the altitude increases
•If the distance from the surface of the Earth gets infinitely large, the weight of the 
object approaches 0.

What would the gravitational 
acceleration be if the object is at 
an altitude h above the surface of 
the Earth?

mg

What do these tell us about the gravitational acceleration?

gF
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Example for Gravitational Force
The international space station is designed to operate at an altitude of 350km.  When 
completed, it will have a weight (measured on the surface of the Earth) of 4.22x106N.  
What is its weight when in its orbit?

The total weight of the station on the surface of the Earth is

Therefore the weight in the orbit is

GEF

OF

Since the orbit is at 350km above the surface of the Earth, 
the gravitational force at that height is

MEEE

OF

mg= 2
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Kepler’s Laws & Ellipse

Kepler lived in Germany and discovered the law’s governing planets’ 
movement some 70 years before Newton, by analyzing data.

Newton’s laws explain the cause of the above laws. Kepler’s third law is 
a direct consequence of law of gravitation being inverse square law.

F1 F2

b
c

a
Ellipses have two different axis, major (long) and 
minor (short) axis, and two focal points, F1 & F2

a is the length of a semi-major axis
b is the length of a semi-minor axis

1. All planets move in elliptical orbits with the Sun at one focal point.
2. The radius vector drawn from the Sun to a planet sweeps out equal 

area in equal time intervals. (Angular momentum conservation)
3. The square of the orbital period of any planet is proportional to the 

cube of the semi-major axis of the elliptical orbit.
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The Law of Gravity and Motions of Planets
•Newton assumed that the law of gravitation applies the same 
whether it is on the Moon or the apple on the surface of the Earth.
•The interacting bodies are assumed to be point like particles.

Therefore the centripetal acceleration of the Moon, aM, is

Newton predicted that the ratio of the Moon’s 
acceleration aM to the apple’s acceleration g would be 

g
aM

RE

MoonApple g aM
v

234 /1070.280.91075.2 smaM
−− ×=××=

Newton also calculated the Moon’s orbital acceleration aM from the knowledge of its distance 
from the Earth and its orbital period, T=27.32 days=2.36x106s

Ma

This means that the Moon’s distance is about 60 times that of the Earth’s radius, and its 
acceleration is reduced by the square of the ratio.   This proves that the inverse square law is valid. 
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Kepler’s Third Law
It is crucial to show that Keper’s third law can be predicted from the 
inverse square law for circular orbits.

Since the orbital speed, v, of the planet with period T is

Since the gravitational force exerted by the Sun is radially
directed toward the Sun to keep the planet on a near 
circular path, we can apply Newton’s second law

2r
MGM Ps

T
rv π2

=

The above can be written

This is Kepler’s third law.  It’s also valid for ellipse for r being the length of the 
semi-major axis.  The constant Ks is independent of mass of the planet. 

Msss

v

r

2r
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Solving for T 
one can obtain 
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Example of Kepler’s Third Law
Calculate the mass of the Sun using the fact that the period of the Earth’s orbit 
around the Sun is 3.16x107s, and its distance from the Sun is 1.496x1011m.

Using Kepler’s third law.

The mass of the Sun, Ms, is

2T

sM

3
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Kepler’s Second Law and Angular Momentum Conservation

Since the gravitational force acting on the planet is 
always toward radial direction, it is a central force

Consider a planet of mass Mp moving around the Sun in an elliptical orbit.

τ

Because the gravitational force exerted on a 
planet by the Sun results in no torque, the 
angular momentum L of the planet is constant. 

This is Keper’s second law which states that the radius vector from 
the Sun to a planet sweeps our equal areas in equal time intervals. 

dA

Therefore the torque acting on the planet by this 
force is always 0.

Since torque is the time rate change of angular 
momentum L, the angular momentum is constant. τ

L

S B
A

D

C

r
dr

Since the area swept by the 
motion of the planet is dt

dA

Fr ×= rFr ˆ×= 0=
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Ld
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Motion in Accelerated Frames
Newton’s laws are valid only when observations are made in an 
inertial frame of reference.   What happens in a non-inertial frame?
Fictitious forces are needed to apply Newton’s second law in an accelerated frame.

This force does not exist when the observations are made in an inertial reference frame.

What does 
this mean 
and why is 
this true?

Let’s consider a free ball inside a box  under uniform circular motion.

We see that the box has a radial force exerted on it but 
none on the ball directly

How does this motion look like in an inertial frame (or 
frame outside a box)?

r
Fr

How does this motion look like in the box?

The ball is tumbled over to the wall of the box and  feels 
that it is getting force that pushes it toward the wall.

Why? According to Newton’s first law, the ball wants to continue 
on its original movement but since the box is turning, the 
ball feels like it is being pushed toward the wall relative to 
everything else in the box.

v
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Non-Inertial 
Frame

Example of Motion in Accelerated Frames
A ball of mass m is hung by a cord to the ceiling of a boxcar that is moving with an 
acceleration a.   What do the inertial observer at rest and the non-inertial observer 
traveling inside the car conclude?   How do they differ? 

m

This is how the ball looks like no matter which  frame you are in.

=∑ F

Inertial 
Frame

θ How do the free-body diagrams look for two frames?

Fg=mg
m

θT

Fg=mg
m

θT

Ffic

ac

How do the motions interpreted in these two frames? Any differences?

For an inertial frame observer, the forces 
being exerted on the ball are only T and Fg.  
The acceleration of the ball is the same as 
that of the box car and is provided by the x 
component of the tension force.

=∑F
In the non-inertial frame observer, the forces 
being exerted on the ball are T, Fg, and Ffic.  
For some reason the ball is under a force, 
Ffic, that provides acceleration to the ball.

=∑ xF

=∑ yF

θcos
mgT = θtangac =

=∑ xF

=∑ yF

θcos
mgT =

θsinTmaF ficfic ==

θtangafic =
While the mathematical expression of the 
acceleration of the ball is identical to that of 
inertial frame observer’s, the cause of the 
force is dramatically different.

TF g +

=xma =cma θsinT
=− mgT θcos 0

ficg FTF ++

=− ficFT θsin 0

=−mgT θcos 0


