1. Impulse and Momentum Change
2. Collisions
3. Two Dimensional Collisions
4. Center of Mass
5. CM and the Center of Gravity
6. Fundamentals on Rotational Motion

2nd Term Exam Monday, Nov. 1!! Covers CH 6 – 10.5!!
Impulse and Linear Momentum

Net force causes change of momentum \Rightarrow Newton’s second law

By integrating the above equation in a time interval t_i to t_f, one can obtain impulse I.

Impulse of the force F acting on a particle over the time interval $\Delta t = t_f - t_i$ is equal to the change of the momentum of the particle caused by that force. Impulse is the degree of which an external force changes momentum.

The above statement is called the impulse-momentum theorem and is equivalent to Newton’s second law.

What are the dimension and unit of Impulse?
What is the direction of an impulse vector?

Defining a time-averaged force

Impulse can be rewritten

If force is constant

It is generally assumed that the impulse force acts on a short time but much greater than any other forces present.
Another Example for Impulse

In a crash test, an automobile of mass 1500kg collides with a wall. The initial and final velocities of the automobile are $v_i = -15.0\, \text{m/s}$ and $v_f = 2.60\, \text{m/s}$. If the collision lasts for 0.150 seconds, what would be the impulse caused by the collision and the average force exerted on the automobile?

Let's assume that the force involved in the collision is a lot larger than any other forces in the system during the collision. From the problem, the initial and final momentum of the automobile before and after the collision is

$$\vec{p}_i = m\vec{v}_i = 1500 \times (-15.0)\hat{i} = -22500\, \hat{i} \, \text{kg} \cdot \text{m/s}$$

$$\vec{p}_f = m\vec{v}_f = 1500 \times (2.60)\hat{i} = 3900\, \hat{i} \, \text{kg} \cdot \text{m/s}$$

Therefore the impulse on the automobile due to the collision is

$$\vec{I} = \Delta \vec{p} = \vec{p}_f - \vec{p}_i = (3900 + 22500)\hat{i} \, \text{kg} \cdot \text{m/s}$$

$$= 26400\hat{i} \, \text{kg} \cdot \text{m/s} = 2.64 \times 10^4\hat{i} \, \text{kg} \cdot \text{m/s}$$

The average force exerted on the automobile during the collision is

$$\overrightarrow{F} = \frac{\Delta \vec{p}}{\Delta t} = \frac{2.64 \times 10^4}{0.150} = 1.76 \times 10^5\, \hat{i} \, \text{N}$$
Collisions

Generalized collisions must cover not only the physical contact but also the collisions without physical contact such as that of electromagnetic ones in a microscopic scale.

Consider a case of a collision between a proton on a helium ion. The collisions of these ions never involve no physical contact because the electromagnetic repulsive force between these two become great as they get closer causing a collision.

Assuming no external forces, the force exerted on particle 1 by particle 2, F_{21}, changes the momentum of particle 1 by

$$dp_1 = F_{21} dt$$

Likewise for particle 2 by particle 1

$$dp_2 = F_{12} dt$$

Using Newton’s 3rd law we obtain

$$dp_2 = F_{12} dt = -F_{21} dt = -dp_1$$

So the momentum change of the system in the collision is 0 and the momentum is conserved

$$\vec{p}_{system} = \vec{p}_1 + \vec{p}_2 = \text{constant}$$
Elastic and Inelastic Collisions

Momentum is conserved in any collisions as long as external forces are negligible.

Collisions are classified as elastic or inelastic based on the conservation of kinetic energy before and after the collisions.

Elastic Collision
A collision in which the total kinetic energy and momentum are the same before and after the collision.

Inelastic Collision
A collision in which the total kinetic energy is not the same before and after the collision, but momentum is.

Two types of inelastic collisions: Perfectly inelastic and inelastic

Perfectly Inelastic: Two objects stick together after the collision, moving together at a certain velocity.

Inelastic: Colliding objects do not stick together after the collision but some kinetic energy is lost.

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.
Elastic and Perfectly Inelastic Collisions

In perfectly Inelastic collisions, the objects stick together after the collision, moving together. Momentum is conserved in this collision, so the final velocity of the stuck system is

\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = (m_1 + m_2) \vec{v}_f \]

How about elastic collisions?

In elastic collisions, both the momentum and the kinetic energy are conserved. Therefore, the final speeds in an elastic collision can be obtained in terms of initial speeds as

\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} \]

\[\frac{1}{2} m_1 v_{1i}^2 + \frac{1}{2} m_2 v_{2i}^2 = \frac{1}{2} m_1 v_{1f}^2 + \frac{1}{2} m_2 v_{2f}^2 \]

\[m_1 (v_{1i}^2 - v_{1f}^2) = m_2 (v_{2i}^2 - v_{2f}^2) \]

\[m_1 (v_{1i} - v_{1f})(v_{1i} + v_{1f}) = m_2 (v_{2i} - v_{2f})(v_{2i} + v_{2f}) \]

\[m_1 (v_{1i} - v_{1f}) = m_2 (v_{2i} - v_{2f}) \]

What happens when the two masses are the same?

\[v_{1f} = \left(\frac{m_1 - m_2}{m_1 + m_2} \right) v_{1i} + \left(\frac{2m_2}{m_1 + m_2} \right) v_{2i} \]

\[v_{2f} = \left(\frac{2m_1}{m_1 + m_2} \right) v_{1i} + \left(\frac{m_1 - m_2}{m_1 + m_2} \right) v_{2i} \]
Example for Collisions

A car of mass 1800kg stopped at a traffic light is rear-ended by a 900kg car, and the two become entangled. If the lighter car was moving at 20.0m/s before the collision, what is the velocity of the entangled cars after the collision?

The momenta before and after the collision are:

\[p_i = m_1 v_{1i} + m_2 v_{2i} = 0 + m_2 v_{2i} \]
\[p_f = m_1 v_{1f} + m_2 v_{2f} = (m_1 + m_2) v_f \]

Since momentum of the system must be conserved,

\[p_i = p_f \]
\[(m_1 + m_2) v_f = m_2 v_{2i} \]
\[v_f = \frac{m_2 v_{2i}}{(m_1 + m_2)} = \frac{900 \times 20.0}{900 + 1800} = 6.67 \text{ m/s} \]

What can we learn from these equations on the direction and magnitude of the velocity before and after the collision?

The cars are moving in the same direction as the lighter car’s original direction to conserve momentum. The magnitude is inversely proportional to its own mass.
Two dimensional Collisions

In two dimension, one can use components of momentum to apply momentum conservation to solve physical problems.

\[m_1 \vec{v}_{1i} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1f} + m_2 \vec{v}_{2f} \]

x-comp.
\[m_1 v_{1ix} + m_2 v_{2ix} = m_1 v_{1fx} + m_2 v_{2fx} \]

y-comp.
\[m_1 v_{1iy} + m_2 v_{2iy} = m_1 v_{1fy} + m_2 v_{2fy} \]

Consider a system of two particle collisions and scatters in two dimension as shown in the picture. (This is the case at fixed target accelerator experiments.) The momentum conservation tells us:

\[m_1 \vec{v}_{ii} + m_2 \vec{v}_{2i} = m_1 \vec{v}_{1i} \]

\[m_1 v_{1ix} = m_1 v_{1fx} + m_2 v_{2fx} = m_1 v_{1f} \cos \theta + m_2 v_{2f} \cos \phi \]

\[m_1 v_{1iy} = 0 = m_1 v_{1fy} + m_2 v_{2fy} = m_1 v_{1f} \sin \theta - m_2 v_{2f} \sin \phi \]

And for the elastic collisions, the kinetic energy is conserved:

\[\frac{1}{2} m_1 v_{1i}^2 = \frac{1}{2} m_1 v_{1f}^2 + \frac{1}{2} m_2 v_{2f}^2 \]

What do you think we can learn from these relationships?
Example for Two Dimensional Collisions

Proton #1 with a speed \(3.50 \times 10^5\) m/s collides elastically with proton #2 initially at rest. After the collision, proton #1 moves at an angle of \(37^\circ\) to the horizontal axis and proton #2 deflects at an angle \(\phi\) to the same axis. Find the final speeds of the two protons and the scattering angle of proton #2, \(\phi\).

Since both the particles are protons \(m_1=m_2=m_p\).

Using momentum conservation, one obtains

\[
\begin{align*}
\text{x-comp.} & \quad m_p v_{1i} = m_p v_{1f} \cos \theta + m_p v_{2f} \cos \phi \\
\text{y-comp.} & \quad m_p v_{1f} \sin \theta - m_p v_{2f} \sin \phi = 0
\end{align*}
\]

Canceling \(m_p\) and put in all known quantities, one obtains

\[
\begin{align*}
v_{1f} \cos 37^\circ + v_{2f} \cos \phi &= 3.50 \times 10^5 \quad (1) \\
 v_{1f} \sin 37^\circ &= v_{2f} \sin \phi \quad (2)
\end{align*}
\]

Solving Eqs. 1-3 equations, one gets

\[
\begin{align*}
v_{1f} &= 2.80 \times 10^5 \text{ m/s} \\
v_{2f} &= 2.11 \times 10^5 \text{ m/s}
\end{align*}
\]

\(\phi = 53.0^\circ\)
Center of Mass

We’ve been solving physical problems treating objects as sizeless points with masses, but in realistic situations objects have shapes with masses distributed throughout the body.

Center of mass of a system is the average position of the system’s mass and represents the motion of the system as if all the mass is on the point.

Consider a massless rod with two balls attached at either end.

The total external force exerted on the system of total mass \(M \) causes the center of mass to move at an acceleration given by \(\vec{a} = \sum \vec{F} / M \) as if all the mass of the system is concentrated on the center of mass.

What does above statement tell you concerning forces being exerted on the system?

The position of the center of mass of this system is the mass averaged position of the system

\[
x_{CM} \equiv \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}
\]

CM is closer to the heavier object
Motion of a Diver and the Center of Mass

Diver performs a simple dive. The motion of the center of mass follows a parabola since it is a projectile motion.

Diver performs a complicated dive. The motion of the center of mass still follows the same parabola since it still is a projectile motion.

The motion of the center of mass of the diver is always the same.
Example 9-12

The three people of roughly equivalent mass M on a lightweight (air-filled) banana boat sit along the x axis at positions $x_1=1.0\,\text{m}$, $x_2=5.0\,\text{m}$, and $x_3=6.0\,\text{m}$. Find the position of CM.

Using the formula for CM

$$x_{CM} = \frac{\sum_{i} m_i x_i}{\sum_{i} m_i}$$

$$= \frac{M \cdot 1.0 + M \cdot 5.0 + M \cdot 6.0}{M + M + M} = \frac{12.0M}{3M} = 4.0\,(\text{m})$$
Center of Mass of a Rigid Object

The formula for CM can be expanded to Rigid Object or a system of many particles

\[
x_{CM} = \frac{m_1 x_1 + m_2 x_2 + \cdots + m_n x_n}{m_1 + m_2 + \cdots + m_n} = \frac{\sum m_i x_i}{\sum m_i}
\]

\[
y_{CM} = \frac{\sum m_i y_i}{\sum m_i}
\]

\[
z_{CM} = \frac{\sum m_i z_i}{\sum m_i}
\]

The position vector of the center of mass of a many particle system is

\[
\vec{r}_{CM} = x_{CM} \hat{i} + y_{CM} \hat{j} + z_{CM} \hat{k} = \frac{\sum m_i \vec{r}_i}{\sum m_i}
\]

A rigid body – an object with shape and size with mass spread throughout the body, ordinary objects – can be considered as a group of particles with mass \(m_i\) densely spread throughout the given shape of the object

\[
x_{CM} \approx \frac{\sum \Delta m_i x_i}{M}
\]

\[
x_{CM} = \lim_{\Delta m_i \to 0} \frac{\sum \Delta m_i x_i}{M} = \frac{1}{M} \int x \, dm
\]

\[
\vec{r}_{CM} = \frac{1}{M} \int \vec{r} \, dm
\]
Example for Center of Mass in 2-D

A system consists of three particles as shown in the figure. Find the position of the center of mass of this system.

Using the formula for CM for each position vector component

\[x_{CM} = \frac{\sum m_i x_i}{\sum m_i} \quad y_{CM} = \frac{\sum m_i y_i}{\sum m_i} \]

One obtains

\[\vec{r}_{CM} = x_{CM} \hat{i} + y_{CM} \hat{j} = \frac{(m_2 + 2m_3)\hat{i} + 2m_1\hat{j}}{m_1 + m_2 + m_3} \]

If \(m_1 = 2\text{kg}; m_2 = m_3 = 1\text{kg} \)

\[\vec{r}_{CM} = \frac{3\hat{i} + 4\hat{j}}{4} = 0.75\hat{i} + \hat{j} \]
Example of Center of Mass; Rigid Body

Show that the center of mass of a rod of mass M and length L lies in midway between its ends, assuming the rod has a uniform mass per unit length.

The formula for CM of a continuous object is

$$x_{CM} = \frac{1}{M} \int_{x=0}^{x=L} x \, dm$$

Since the density of the rod (λ) is constant; $\lambda = \frac{M}{L}$

The mass of a small segment $dm = \lambda \, dx$

Therefore

$$x_{CM} = \frac{1}{M} \int_{x=0}^{x=L} \lambda x \, dx = \frac{1}{M} \left[\frac{1}{2} \lambda x^2 \right]_{x=0}^{x=L} = \frac{1}{M} \left(\frac{1}{2} \lambda L^2 \right) = \frac{1}{M} \left(\frac{1}{2} ML \right) = \frac{L}{2}$$

Find the CM when the density of the rod non-uniform but varies linearly as a function of x, $\lambda = \alpha \, x$

$$M = \int_{x=0}^{x=L} \lambda \, dx = \int_{x=0}^{x=L} \alpha x \, dx$$

$$= \left[\frac{1}{2} \alpha x^2 \right]_{x=0}^{x=L} = \frac{1}{2} \alpha L^2$$

$$x_{CM} = \frac{1}{M} \int_{x=0}^{x=L} \lambda x \, dx = \frac{1}{M} \int_{x=0}^{x=L} \alpha x^2 \, dx = \frac{1}{M} \left[\frac{1}{3} \alpha x^3 \right]_{x=0}^{x=L}$$

$$x_{CM} = \frac{1}{M} \left(\frac{1}{3} \alpha L^3 \right) = \frac{1}{M} \left(\frac{2}{3} ML \right) = \frac{2L}{3}$$
Center of Mass and Center of Gravity

The center of mass of any symmetric object lies on an axis of symmetry and on any plane of symmetry, if object’s mass is evenly distributed throughout the body.

One can use gravity to locate CM.
1. Hang the object by one point and draw a vertical line following a plum-bob.
2. Hang the object by another point and do the same.
3. The point where the two lines meet is the CM.

Since a rigid object can be considered as collection of small masses, one can see the total gravitational force exerted on the object as

$$\sum \Delta \text{m}_i \vec{g} = M \vec{g}$$

What does this equation tell you?

The net effect of these small gravitational forces is equivalent to a single force acting on a point (Center of Gravity) with mass M.

The CoG is the point in an object as if all the gravitational force is acting on!
Motion of a Group of Particles

We’ve learned that the CM of a system can represent the motion of a system. Therefore, for an isolated system of many particles in which the total mass M is preserved, the velocity, total momentum, acceleration of the system are

- **Velocity of the system**

 $$\vec{v}_{CM} = \frac{d\vec{r}_{CM}}{dt} = \frac{d}{dt}\left(\frac{1}{M} \sum m_i \vec{r}_i\right) = \frac{1}{M} \sum m_i \frac{d\vec{r}_i}{dt} = \frac{\sum m_i \vec{v}_i}{M}$$

- **Total Momentum of the system**

 $$\vec{p}_{CM} = M\vec{v}_{CM} = M \frac{\sum m_i \vec{v}_i}{M} = \sum m_i \vec{v}_i = \sum \vec{p}_i = \vec{p}_{tot}$$

- **Acceleration of the system**

 $$\vec{a}_{CM} = \frac{d\vec{v}_{CM}}{dt} = \frac{d}{dt}\left(\frac{1}{M} \sum m_i \vec{v}_i\right) = \frac{1}{M} \sum m_i \frac{d\vec{v}_i}{dt} = \frac{\sum m_i \vec{a}_i}{M}$$

- **External force exerting on the system**

 $$\sum \vec{F}_{ext} = M\vec{a}_{CM} = \sum m_i \vec{a}_i = \frac{d\vec{p}_{tot}}{dt}$$

- **If net external force is 0**

 $$\sum \vec{F}_{ext} = 0 = \frac{d\vec{p}_{tot}}{dt} \quad \vec{p}_{tot} = \text{const}$$

- **What about the internal forces?**

- **System’s momentum is conserved.**