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Impulse and Linear Momentum 

By integrating the above 
equation in a time interval ti to 
tf, one can obtain impulse I.

Impulse of the force F acting on a particle over the time 
interval ∆t=tf-ti is equal to the change of the momentum of 
the particle caused by that force.   Impulse is the degree of 
which an external force changes momentum.

The above statement is called the impulse-momentum theorem and is equivalent to Newton’s second law.  

d pF
dt

=
Net force causes change of momentum Î
Newton’s second law

So what do you 
think an impulse is?

What are the 
dimension and 
unit of Impulse?  
What is the 
direction of an 
impulse vector? 

Defining a time-averaged force 

1
i

i
F F t

t
≡ ∆
∆ ∑

Impulse can be rewritten 

tFI ∆≡

If force is constant  

tFI ∆≡
It is generally assumed that the impulse force acts on a 
short time but much greater than any other forces present.

d p Fdt=

f

i

t

t
d p =∫ f ip p− = p∆ = f

i

t

t
Fdt =∫ I
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Another Example for Impulse
In a crash test, an automobile of mass 1500kg collides with a wall.  The initial and 
final velocities of the automobile are vi= -15.0i m/s and vf=2.60i m/s.  If the collision 
lasts for 0.150 seconds, what would be the impulse caused by the collision and the 
average force exerted on the automobile?

ip

Let’s assume that the force involved in the collision is a lot larger than any other 
forces in the system during the collision.   From the problem, the initial and final 
momentum of the automobile before and after the collision is 

Therefore the impulse on the 
automobile due to the collision  is

The average force exerted on the 
automobile during the collision  is

F

I

ivm= ( ) smkgii / 225000.151500 ⋅−=−×=

fp fvm= ( ) smkgii / 390060.21500 ⋅=×=

p∆= ipp
f
−= ( ) smkgi /  225003900 ⋅+=

smkgismkgi / 1064.2/ 26400 4 ⋅×=⋅=

t
p

∆
∆

=
150.0

1064.2 4×
=

N 1076.1/ 1076.1 525 ismkgi ×=⋅×=
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Collisions 

Consider a case of a collision 
between a proton on a helium ion. 

The collisions of these ions never involve no 
physical contact because the electromagnetic 
repulsive force between these two become great 
as they get closer causing a collision.

Generalized collisions must cover not only the physical contact but also the collisions 
without physical contact such as that of electromagnetic ones in a microscopic scale.

211dp F dt=t

F F12

F21

Assuming no external forces, the force 
exerted on particle 1 by particle 2, F21, 
changes the momentum of particle 1 by  

Likewise for particle 2 by particle 1  122dp F dt=

Using Newton’s 3rd law we obtain   

So the momentum change of the system in the 
collision is 0 and the momentum is conserved

2dp

d p

12F dt= 21F dt=− 1dp=−

1 2d p d p= +

systemp 21 pp += constant=
0=
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Elastic and Inelastic Collisions 

Collisions are classified as elastic or inelastic based on the conservation of 
kinetic energy before and after the collisions.

A collision in which the total kinetic energy and momentum 
are the same before and after the collision.  

Momentum is conserved in any collisions as long as external forces are negligible.

Elastic 
Collision

Two types of inelastic collisions:Perfectly inelastic and inelastic  

Perfectly Inelastic: Two objects stick together after the collision, 
moving together at a certain velocity.

Inelastic: Colliding objects do not stick together after the collision but 
some kinetic energy is lost.

Inelastic 
Collision

A collision in which the total kinetic energy is not the same 
before and after the collision, but momentum is.

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.  
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Elastic and Perfectly Inelastic Collisions 
In perfectly Inelastic collisions, the objects stick 
together after the collision, moving together.  
Momentum is conserved in this collision, so the 
final velocity of the stuck system is

How about elastic collisions?

ii vmvm 2211 +

In elastic collisions, both the 
momentum and the kinetic energy 
are conserved. Therefore, the 
final speeds in an elastic collision 
can be obtained in terms of initial 
speeds as 

ii vmvm 2211 +

( )2
1

2
11 fi vvm −

( ) ( )fifi vvmvvm 222111 −=−

iif v
mm

mv
mm
mmv 2

21

2
1

21

21
1

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=

fvmm )( 21 +=

)( 21

2211

mm
vmvmv ii

f
+
+

=

ff vmvm 2211 +=

2
22

2
11 2

1
2
1

ii vmvm + 2
22

2
11 2

1
2
1

ff vmvm +=

( )2
2

2
22 fi vvm −=

( )( )fifi vvvvm 11111 +− ( )( )fifi vvvvm 22222 +−=

From momentum 
conservation above

iif v
mm
mmv

mm
mv 2

21

21
1

21

1
2

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

What happens when the two masses are the same?
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Example for Collisions
A car of mass 1800kg stopped  at a traffic light is rear-ended by a 900kg car, and 
the two become entangled.  If the lighter car was moving at 20.0m/s before the 
collision what is the velocity of the entangled cars after the collision?

ip
The momenta before and after the collision are

What can we learn from these equations 
on the direction and magnitude of the 
velocity before and after the collision?

m1

20.0m/s

m2

vf
m1

m2

Since momentum of the system must be conserved

fi pp =

The cars are moving in the same direction as the lighter 
car’s original direction to conserve momentum. 
The magnitude is inversely proportional to its own mass.

Before collision

After collision

ii vmvm 2211 += ivm 220 +=

fp ff vmvm 2211 += ( ) fvmm 21 +=

( ) fvmm 21 + ivm 22=

fv ( )21

22

mm
vm i

+
= smii / 67.6

1800900
0.20900

=
+
×

=
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Two dimensional Collisions 
In two dimension, one can use components of momentum to apply 
momentum conservation to solve physical problems.

fii vmvmvmvm f 221 21121 +=+

2
1 12

1
i

vm

m2

m1

v1i

m 1

v 1f

θ

m
2

v2f

φ

Consider a system of two particle collisions and scattersin
two dimension as shown in the picture.  (This is the case at 
fixed target accelerator experiments.)  The momentum 
conservation tells us:

ii vmvm 21 21 +

And for the elastic collisions, the 
kinetic energy is conserved:

What do you think 
we can learn from 
these relationships?

fxfx vmvm 2211 += φθ coscos 2211 ff vmvm +=

iyvm 11 0= fyfy vmvm 2211 += φθ sinsin 2211 ff vmvm −=

ivm 11=

ixvm 11

2
22

2
11 2

1
2
1

ff vmvm +=

fxfxixix vmvmvmvm 22112211 +=+

fyfyiyiy vmvmvmvm 22112211 +=+

x-comp.

y-comp.
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Example for Two Dimensional Collisions
Proton #1 with a speed 3.50x105 m/s collides elastically with proton #2 initially at 
rest.  After the collision, proton #1 moves at an angle of 37o to the horizontal axis 
and proton #2 deflects at an angle φ to the same axis.  Find the final speeds of the 
two protons and the scattering angle of proton #2, φ.

Since both the particles are protons m1=m2=mp.
Using momentum conservation, one obtainsm2

m1

v1i

m 1

v 1f

θ

m
2

v2f

φ

ipvm 1

Canceling mp and put in all known quantities, one obtains

smv f /1080.2 5
1 ×=

From kinetic energy 
conservation:

( ) (3)    1050.3 2
2

2
1

25
ff vv +=×

Solving Eqs. 1-3 
equations, one gets

(1)   1050.3cos37cos 5
21 ×=+ φff vv

Do this at 
home☺

φθ coscos 21 fpfp vmvm +=

φθ sinsin 21 fpfp vmvm − 0=

x-comp.

y-comp.

(2)    sin37sin 21 φff vv =

smv f /1011.2 5
2 ×=

0.53=φ
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Center of Mass
We’ve been solving physical problems treating objects as sizeless
points with masses, but in realistic situation objects have shapes 
with masses distributed throughout the body.    

Center of mass of a system is the average position of the system’s mass and 
represents the motion of the system as if all the mass is on the point. 

Consider a massless rod with two balls attached at either end.

CMx ≡

The total external force exerted on the system of 
total mass M causes the center of mass to move at 
an acceleration given by                         as if all 
the mass of the system is concentrated on the 
center of mass.

MFa /∑=
What does above 
statement tell you 
concerning forces being 
exerted on the system?

m1 m2
x1 x2

The position of the center of mass of this system is 
the mass averaged position of the systemxCM CM is closer to the 

heavier object
1 1 2 2

1 2

m x m x
m m

+
+
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Motion of a Diver and the Center of Mass

Diver performs a simple dive.
The motion of the center of mass 
follows a parabola since it is a 
projectile motion.

Diver performs a complicated dive.
The motion of the center of mass 
still follows the same parabola since 
it still is a projectile motion.

The motion of the center of mass 
of the diver is always the same. 
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Example 9-12
Thee people of roughly equivalent mass M on a lightweight (air-filled) 
banana boat sit along the x axis at positions x1=1.0m, x2=5.0m, and 
x3=6.0m.  Find the position of CM. 

Using the formula 
for CM

∑
∑

=

i
i

i
ii

CM m

xm
x

1.0M ⋅ 12.0
3

M
M

=
                                         

=
M M M+ +

4.0( )m=
5.0M+ ⋅ 6.0M+ ⋅
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Center of Mass of a Rigid Object
The formula for CM can be expanded to Rigid Object or a 
system of many particles 

A rigid body – an object with shape 
and size with mass spread throughout 
the body, ordinary objects – can be 
considered as a group of particles with 
mass mi densely spread throughout 
the given shape of the object

∑
∑

=
+⋅⋅⋅++
+⋅⋅⋅++

=

i
i

i
ii

n

nn
CM m

xm

mmm
xmxmxmx

21

2211

∑
∑

=

i
i

i
ii

CM m

ym
y

The position vector of the 
center of mass of a many 
particle system is 

CMr

M

xm
x i

ii

CM

∑ ∆
≈

CMx

∫= dmr
M

rCM
1

∆mi

ri
rCM

∑
∑

=

i
i

i
ii

CM m

zm
z

kzjyix CMCMCM ++=

∑
∑∑∑ ++

=

i
i

i
ii

i
ii

i
ii

m

kzmjymixm  

M

rm
r i

ii

CM

∑
=

M

xm
i

ii

mi

∑ ∆
=

→∆ 0
lim ∫= xdm

M
1



Monday, Oct. 25, 2004 PHYS 1443-003, Fall 2004
Dr. Jaehoon Yu

14

Example for Center of Mass in 2-D
A system consists of three particles as shown in the figure.  Find the 
position of the center of mass of this system.

Using the formula for CM for each 
position vector component

∑
∑

=

i
i

i
ii

CM m

xm
x

One obtains

CMx

CMr

If kgmmkgm 1;2 321 ===

jijirCM +=
+

= 75.0
4

43

m1
y=2 (0,2)

m2

x=1

(1,0)
m3
x=2

(2,0)

(0.75,4)
rCM ∑

∑
=

i
i

i
ii

CM m

ym
y

∑
∑

=

i
i

i
ii

m

xm

321

332211

mmm
xmxmxm

++
++

=
321

32 2
mmm

mm
++

+
=

CMy ∑
∑

=

i
i

i
ii

m

ym

321

332211

mmm
ymymym

++
++

=
321

12
mmm

m
++

=

 CMx i=
( )

321

132 2 2
mmm

jmimm
++
++

=
CMy j+
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Example of Center of Mass; Rigid Body

The formula for CM of a continuous object is

∫
=

=
=

Lx

xCM xdm
M

x
0

1

Therefore

L

x dx
dm=λdx

Since the density of the rod (λ) is constant;

CMx

Show that the center of mass of a rod of mass M and length L lies in midway 
between its ends, assuming the rod has a uniform mass per unit length.

Find the CM when the density of the rod non-uniform but varies linearly as a function of x, λ=α x

CMxM

dxdm λ=
LM /=λ

The mass of a small segment

∫
=

=
=

Lx

x
xdx

M 0

1 λ
Lx

x

x
M

=

=
⎥⎦
⎤

⎢⎣
⎡=

0

2

2
11 λ ⎟

⎠
⎞

⎜
⎝
⎛= 2

2
11 L

M
λ ⎟

⎠
⎞

⎜
⎝
⎛= ML

M 2
11

2
L

=

∫
=

=
=

Lx

x
dx

0
λ ∫

=

=
=

Lx

x
xdx

0
α

Lx

x

x
=

=
⎥⎦
⎤

⎢⎣
⎡=

0

2

2
1α 2

2
1 Lα=

∫
=

=
=

Lx

x
xdx

M 0

1 λ ∫
=

=
=

Lx

x
dxx

M 0

21 α
Lx

x

x
M

=

=
⎥⎦
⎤

⎢⎣
⎡=

0

3

3
11 α

⎟
⎠
⎞

⎜
⎝
⎛= 3

3
11 L

M
α ⎟

⎠
⎞

⎜
⎝
⎛= ML

M 3
21

3
2L

=CMx
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The net effect of these small gravitational 
forces is equivalent to a single force acting on 
a point (Center of Gravity) with mass M.

Center of Mass and Center of Gravity
The center of mass of any symmetric object lies on an 
axis of symmetry and on any plane of symmetry, if 
object’s mass is evenly distributed throughout the body.

Center of Gravity

How do you think you 
can determine the CM of 
objects that are not 
symmetric?

gF
∆mi

CM

Axis of 
symmetryOne can use gravity to locate CM.

1. Hang the object by one point and draw a vertical line 
following a plum-bob.

2. Hang the object by another point and do the same.
3. The point where the two lines meet is the CM. 

∆mig

Since a rigid object can be considered as collection 
of small masses, one can see the total gravitational 
force exerted on the object as 

What does this 
equation tell you?

∑=
i

iF ∑ ∆=
i

i gm gM=

The CoG is the point in an object as if all the gravitational force is acting on!
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Motion of a Group of Particles
We’ve learned that the CM of a system can represent the motion of a system.  
Therefore, for an isolated system of many particles in which the total mass 
M is preserved, the velocity, total momentum, acceleration of the system are

Velocity of the system CMv

Total Momentum 
of the system CMp

Acceleration of 
the system CMa

External force exerting 
on the system ext

F∑

If net external force is 0 0=∑ ext
F System’s momentum 

is conserved.

What about the 
internal forces?

dt
rd CM= ⎟

⎠
⎞

⎜
⎝
⎛= ∑ ii rm
Mdt

d 1
∑=

dt
rdm

M
i

i
1

M
vm ii∑=

CMvM=
M

vm
M

ii∑= ∑= ii vm toti
pp ==∑

dt
vd CM= ⎟

⎠
⎞

⎜
⎝
⎛= ∑ ii vm

Mdt
d 1

∑=
dt
vdm

M
i

i
1

M
am ii∑=

CMaM= ∑= ii am
dt
pd tot=

dt
pd tot= const=totp


