• Gauss’ Law
• How are Gauss’ Law and Coulom’s Law Related?
• Electric Potential Energy
• Electric Potential
Announcements

- I have all but 10 of you, of which 5 on the distribution list, sent me confirmation.
 - The other five are not on the distribution list.

- Extra credit opportunities
 - Attend two Einstein lectures and get your flier signed by the lecture:
 5 extra credit each
 - One today at noon on the 6th floor central library
 - The other at 2pm Thursday in NH 100.
 - 15 point extra credit for presenting a professionally prepared 3 page presentation on any one of the exhibits at the UC gallery (till 9/16) and the subsequent themed displays at the central library.
 - Must include what it does, how it works and where it is used. Possibly how it can be made to perform better.
 - Due: Oct. 19, 2005
Gauss’ Law from Coulomb’s Law

Irregular Surface

- Let’s consider a single point static charge Q surrounded by a symmetric spherical surface A_1 and a randomly shaped surface A_2.

- What is the difference in the number of field lines passing through the two surface due to the charge Q?
 - None. What does this mean?
 - The total number of field lines passing through the surface is the same no matter what the shape of the enclosed surface is for the same enclosed charge.
 - So we can write: $\oint A_1 E \cdot dA = \oint A_2 E \cdot dA = \frac{Q}{\varepsilon_0}$
 - What does this mean?
 - The flux due to the given enclosed charge is the same no matter what the surface enclosing it is. ⇒ Gauss’ law, $\oint E \cdot dA = \frac{Q}{\varepsilon_0}$, is valid for any surface surrounding a single point charge Q.

\[\oint E \cdot dA = \int_A E \cdot dA = \frac{Q}{\varepsilon_0}\]
Gauss’ Law w/ more than one charge

- Let’s consider several charges inside a closed surface.
- For each charge, Q_i, enclosed by the chosen surface,
 \[\oint E_i \cdot dA = \frac{Q_i}{\varepsilon_0} \]
 What is E_i?
 The electric field produced by Q_i alone!
- Since electric fields can be added vectorially, following the superposition principle, the total field \vec{E} is equal to the sum of the fields due to each separate charge $\vec{E} = \sum E_i$. So
 \[\oint \vec{E} \cdot dA = \oint \left(\sum E_i \right) \cdot dA = \sum \frac{Q_i}{\varepsilon_0} = \frac{Q_{\text{encl}}}{\varepsilon_0} \]
 What is Q_{encl}?
 The total enclosed charge!
- Gauss’ law follows from Coulomb’s law for any distribution of electric charge enclosed within a closed surface of any shape.
So what good is Gauss’ Law?

• Derivation of Gauss’ law from Coulomb’s law is only valid for static electric charge.

• Electric field can also be produced by changing magnetic fields.
 – Coulomb’s law cannot describe this field while Gauss’ law is still valid

• Gauss’ law is more general than Coulomb’s law.
 – Can be used to obtain electric field, forces or obtain charges

Gauss’ Law: Any difference between the input and output flux of the electric field over any enclosed surface is due to the charge within that surface!!!
Example 22 – 2

Flux from Gauss’ Law: Consider the two gaussian surfaces, A_1 and A_2, shown in the figure. The only charge present is the charge Q at the center of surface A_1. What is the net flux through each surface A_1 and A_2?

• The surface A_1 encloses the charge $+Q$, so from Gauss’ law we obtain the total net flux:
 \[
 \oint \mathbf{E} \cdot d\mathbf{A} = \frac{+Q}{\varepsilon_0}
 \]

• The surface A_2 the charge, $+Q$, is outside the surface, so the total net flux is 0.

\[
\oint \mathbf{E} \cdot d\mathbf{A} = \frac{0}{\varepsilon_0} = 0
\]
Example 22 – 5

Long uniform line of charge: A very long straight wire possesses a uniform positive charge per unit length, \(\lambda \). Calculate the electric field at points near but outside the wire, far from the ends.

- Which direction do you think the field due to the charge on the wire is?
 - Radially outward from the wire, the direction of radial vector \(r \).

- Due to cylindrical symmetry, the field is the same on the gaussian surface of a cylinder surrounding the wire.
 - The end surfaces do not contribute to the flux at all. Why?
 - Because the field vector \(\vec{E} \) is perpendicular to the surface vector \(dA \).

- From Gauss' law
 \[
 \oint E \cdot d\vec{A} = E \oint dA = E (2\pi rl) = \frac{Q_{encl}}{\varepsilon_0} = \frac{\lambda l}{\varepsilon_0}
 \]

 Solving for \(E \)
 \[
 E = \frac{\lambda}{2\pi\varepsilon_0 r}
 \]
Electric Potential Energy

• Concept of energy is very useful solving mechanical problems
• Conservation of energy makes solving complex problems easier.
• When can the potential energy be defined?
 – Only for a conservative force.
 – The work done by a conservative force is independent of the path but only dependent on??
 • The difference between the initial and final positions
 – Can you give me an example of a conservative force?
 • Gravitational force
• Is the electrostatic force between two charges a conservative force?
 – Yes. Why?
 – The dependence of the force to the distance is identical to that of the gravitational force.