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Coordinate Systems
• Make it easy to express locations or positions
• Two commonly used systems, depending on convenience

– Cartesian (Rectangular) Coordinate System
• Coordinates are expressed in (x,y)

– Polar Coordinate System 
• Coordinates are expressed in (r,θ)

• Vectors become a lot easier to express and compute
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Example 3.1 
Cartesian Coordinate of a point in the xy plane are (x,y)= (-3.50,-
2.50)m.  Find the polar coordinates of this point.
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Vector and Scalar
Vector quantities have both magnitude (size) 
and direction

Scalar quantities have magnitude only
Can be completely specified with a value 
and its unit

Force, gravitational pull, momentum

Normally denoted in BOLD BOLD letters, FF, or a letter with arrow on top F
Their sizes or magnitudes are denoted with normal letters letters, F, 
or absolute values: For  F

Energy, heat, 
mass, weight

Normally denoted in normal letters, E

Both have units!!!
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Properties of Vectors
• Two vectors are the same if their sizes and the direction 

are the same, no matter where they are on a coordinate 
system.

x

y

AA
BB

EE

DD

CC

FF

Which ones are the 
same vectors?

A=B=E=DA=B=E=D

Why aren’t the others?

C:C: The same magnitude 
but opposite direction: 
C=C=--A:A:A negative vector

F:F: The same direction 
but different magnitude 
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Vector Operations
• Addition: 

– Triangular Method: One can add vectors by connecting the head of one vector to 
the tail of the other

– Parallelogram method: Connect the tails of the two vectors and extend
– Addition is commutative: Changing order of operation does not affect the results 

A+B=B+AA+B=B+A, A+B+C+D+E=E+C+A+B+DA+B+C+D+E=E+C+A+B+D

AA

BBA+BA+B AA

BB A+BA+B=
AA

BB A+BA+B

• Subtraction: 
– The same as adding a negative vector:A A - B = A B = A + (-BB)

AA
--BB

AA--BB

Since subtraction is the equivalent to 
adding a negative vector, subtraction is also 
commutative!!!

• Multiplication by a scalar is 
increasing the magnitude A, BA, B=2A A 

AA B=2AB=2A

AB 2=

Fig03-07.ip
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Example 3.2
A car travels 20.0km due north followed by 35.0km in a direction 60.0o west 
of north. Find the magnitude and direction of resultant displacement.
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Components and Unit Vectors
• Coordinate systems are useful in expressing vectors in their components

(Ax,Ay)
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• Unit vectors are dimensionless vectors whose magnitude is exactly 1

• Unit vectors are usually expressed in i,j,k or 
• Vectors can be expressed using components and unit vectors

kji  , ,

jAiAjAiAA yx θθ sincos +=+=So the above vector 
AA can be written as
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Examples 3.3 & 3.4
Find the resultant vector which is the sum of AA=(2.0ii+2.0jj) and B B =(2.0ii-4.0jj)
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Find the resultant displacement of three consecutive displacements: 
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Displacement, Velocity, and Acceleration in 2-dim

• Displacement: if rrr −=∆

• Average Velocity:
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2-dim Motion Under Constant Acceleration

• Position vectors in xy plane: jyixr iii += jyixr fff +=

• Velocity vectors in xy plane: jvivv yixii += jvivv yfxff +=
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• How are the position vectors written in acceleration vectors?
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Example 4.1
A particle starts at origin when t=0 with an initial velocity  vv=(20ii-15jj)m/s.  
The particle moves in the xy plane with ax=4.0m/s2. Determine the 
components of velocity vector at any time, t.
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Projectile Motion
• A 2-dim motion of an object under the gravitational acceleration with the 

assumptions
– Free fall acceleration, -g, is constant over the range of the motion
– Air resistance and other effects are negligible

• A motion under constant acceleration!!!! è Superposition of two motions
– Horizontal motion with constant velocity and
– Vertical motion under constant acceleration
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Show that a projectile motion is a parabola!!!

Fig04-06.ip
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Example 4.2
A ball is thrown with an initial velocity  vv=(20ii+40jj)m/s.  Estimate the time of 
flight and the distance the ball is from the original position when landed.

Which component determines the flight time and the distance?
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Flight time is determined 
by y component, because 
the ball stops moving 
when it is on the ground 
after the flight.

Distance is determined by x
component in 2-dim, because 
the ball is at y=0 position 
when it completed it’s flight.
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Horizontal Range and Max Height
• Based on what we have learned previously, one can 

analyze a projectile motion in more detail
– Maximum height an object can reach
– Maximum range
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At the maximum height the object’s 
vertical motion stops to turn around!!
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Maximum Range and Height
• What are the conditions that give maximum height and 

range in a projectile motion?
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the maximum hieght can 
be achieved when 
2θi=90o, i.e., θi=45o!!!
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Example 4.5Ex04-05a.ip

• A stone was thrown upward from the top of a building at an angle of 30o to 
horizontal with initial speed of 20.0m/s.  If the height of the building is 45.0m, 
how long is it before the stone hits the ground? 
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• What is the speed of the stone just before it hits the ground? 
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Uniform Circular Motion
• A motion with a constant speed on a circular path.

– The velocity of the object changes, because the direction 
changes

– Therefore, there is an acceleration

vi

vj

∆v
r

vi
vj

θ ∆r∆θr2

r1

The acceleration pulls the object inward: Centripetal Acceleration

t
v

tt
vv

a
if

if

∆
∆

=
−
−

=Average 
Acceleration r

r

t
v

a
r

r
vv

r

r

v

v ∆

∆
=

∆
=∆

∆
=

∆
=   ,  ,θ

Angle 
is ∆θ

r
v

r
vv

r
v

t

r
aa

ttr

2

00
limlim =×=

∆

∆
==

→∆→∆

Instantaneous 
Acceleration

Is this correct  in 
dimension?

What story is this expression  telling you?


