1443-501 Spring 2002 Lecture #3

Dr. Jaehoon Yu

- 1. Coordinate Systems
- 2. Vector Properties and Operations
- 3. 2-dim Displacement, Velocity, & Acceleration
- 4. 2-dim Motion Under Constant Acceleration
- 5. Projectile Motion

Coordinate Systems

- Make it easy to express locations or positions
- Two commonly used systems, depending on convenience
 - Cartesian (Rectangular) Coordinate System
 - Coordinates are expressed in (x,y)
 - Polar Coordinate System
 - Coordinates are expressed in (r, θ)
- Vectors become a lot easier to express and compute

How are Cartesian and Polar coordinates related??

$$x = r \cos \mathbf{q}$$
$$y = r \sin \mathbf{q}$$

$$r = \sqrt{\left(x_1^2 + y_1^2\right)}$$
$$\tan \boldsymbol{q} = \frac{y_1}{x_1}$$

Example 3.1

Cartesian Coordinate of a point in the xy plane are (x,y)=(-3.50,-2.50)m. Find the polar coordinates of this point.

$$r = \sqrt{(x_1^2 + y_1^2)} = \sqrt{((-3.50)^2 + (-2.50)^2)} = \sqrt{18.5} = 4.30(m)$$

$$q = 180 + q_s$$

$$\tan q_s = \frac{-2.50}{-3.50} = \frac{5}{7}$$

$$q_s = \tan^{-1} \left(\frac{5}{7}\right) = 35.5^\circ$$

$$\therefore q = 180 + q_s = 180^\circ + 35.5^\circ = 216^\circ$$

1443-501 Spring 2002 Dr. J. Yu, Lecture #3

Vector and Scalar

Vector quantities have both magnitude (size)and directionForce, gravitational pull, momentum

Normally denoted in **BOLD** letters, F, or a letter with arrow on top \vec{F} .

Their sizes or magnitudes are denoted with normal letters letters, F, or absolute values: $|\vec{F}|$ or |F|

Scalar quantities have magnitude only Can be completely specified with a value

and its unit Normally denoted in normal letters, E

Both have units!!!

Properties of Vectors

• Two vectors are the same if their sizes and the direction are the same, no matter where they are on a coordinate system.

Which ones are the same vectors? **A=B=E=D** Why aren't the others? **C**: The same magnitude but opposite direction: **C**=-**A**:A negative vector **F**: The same direction

but different magnitude

Vector Operations

• Addition:

- Triangular Method: One can add vectors by connecting the head of one vector to the tail of the other
- Parallelogram method: Connect the tails of the two vectors and extend
- Addition is commutative: Changing order of operation does not affect the results
 A+B=B+A, A+B+C+D+E=E+C+A+B+D

• Subtraction:

Jan. 28

- The same as adding a negative vector: **A** - **B** = **A** + (-**B**)

Since subtraction is the equivalent to adding a negative vector, subtraction is also commutative!!!

B=2A

 Multiplication by a scalar is increasing the magnitude A, B=2A

Example 3.2

A car travels 20.0km due north followed by 35.0km in a direction 60.0° west of north. Find the magnitude and direction of resultant displacement.

Components and Unit Vectors

• Coordinate systems are useful in expressing vectors in their components

- Unit vectors are dimensionless vectors whose magnitude is exactly 1
 - Unit vectors are usually expressed in **i**, **j**, **k** or \vec{i} , \vec{j} , \vec{k}
 - Vectors can be expressed using components and unit vectors

So the above vector A can be written as

$$\vec{A} = A_x \vec{i} + A_y \vec{j} = |\vec{A}| \cos q \vec{i} + |\vec{A}| \sin q \vec{j}$$

Jan. 28, 2002

Examples 3.3 & 3.4

Find the resultant vector which is the sum of A = (2.0i + 2.0j) and B = (2.0i - 4.0j)

$$\vec{C} = \vec{A} + \vec{B} = (2 \cdot 0 \, \vec{i} + 2 \cdot 0 \, \vec{j}) + (2 \cdot 0 \, \vec{i} - 4 \cdot 0 \, \vec{j})$$

$$= (2 \cdot 0 + 2 \cdot 0) \vec{i} + (2 \cdot 0 - 4 \cdot 0) \vec{j} = (4 \cdot 0 \, \vec{i} - 2 \cdot 0 \, \vec{j}) m$$

$$|C^{\dagger}| = \sqrt{(4 \cdot 0)^{2} + (-2 \cdot 0)^{2}} = \sqrt{16 + 4 \cdot 0} = \sqrt{20} = 4 \cdot 5 \ (m)$$

$$q = \tan^{-1} \frac{C_{y}}{C_{x}} = \tan^{-1} \frac{-2 \cdot 0}{4 \cdot 0} = -27^{\circ}$$

Find the resultant displacement of three consecutive displacements: $d_1 = (15i+30j+12k)cm$, $d_2 = (23i+14j-5.0k)cm$, and $d_1 = (-13i+15j)cm$

$$\overrightarrow{D} = \overrightarrow{d_{1}} + \overrightarrow{d_{2}} + \overrightarrow{d_{3}}$$

$$= (15 \ \vec{i} + 30 \ \vec{j} + 12 \ \vec{k}) + (23 \ \vec{i} - 14 \ \vec{j} - 5 \ .0 \ \vec{k}) + (-13 \ \vec{i} + 15 \ \vec{j})$$

$$= (15 + 23 - 13) \vec{i} + (30 - 14 + 15) \vec{j} + (12 - 5 \ .0) \vec{k}$$

$$= 25 \ \vec{i} + 31 \ \vec{j} + 7 \ .0 \ \vec{k} \ (cm)$$

$$\left|\overrightarrow{D}\right| = \sqrt{(25)^{2} + (31)^{2} + (7 \ .0)^{2}} = 40 \ (cm)$$

Jan. 28, 2002

1443-501 Spring 2002 Dr. J. Yu, Lecture #3 9

Displacement, Velocity, and Acceleration in 2-dim

- Displacement:
- Average Velocity:
- Instantaneous Velocity:
- Average
 Acceleration
- Instantaneous Acceleration:

$$\Delta \vec{r} = \vec{r}_{f} - \vec{r}_{i}$$

$$\vec{v} \equiv \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}_{f} - \vec{r}_{i}}{t_{f} - t_{i}}$$

$$\vec{v} \equiv \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d \vec{r}}{dt}$$

$$\vec{a} \equiv \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_f - \vec{v}_i}{t_f - t_i}$$

$$\vec{a} \equiv \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d \vec{v}}{dt} = \frac{d}{dt} \left(\frac{d \vec{r}}{dt} \right) = \frac{d^2 \vec{r}}{dt^2}$$

2-dim Motion Under Constant Acceleration

• Position vectors in xy plane:

$$\vec{r_i} = x_i \vec{i} + y_i \vec{j}$$

$$\vec{r_f} = x_f \vec{i} + y_f \vec{j}$$

• Velocity vectors in xy plane:

$$\vec{v_i} = v_{xi}\vec{i} + v_{yi}\vec{j}$$

$$\overrightarrow{v_f} = v_{xf} \, \overrightarrow{i} + v_{yf} \, \overrightarrow{j}$$

$$v_{xf} = v_{xi} + a_x t, v_{yf} = v_{yi} + a_y t$$

$$\overrightarrow{v_f} = (v_{xi} + a_x t)\vec{i} + (v_{yi} + a_y t)\vec{j} = \overrightarrow{v_i} + \vec{a}t$$

• How are the position vectors written in acceleration vectors?

$$\begin{aligned} x_{f} &= x_{i} + v_{xi}t + \frac{1}{2}a_{x}t^{2}, y_{f} = y_{i} + v_{yi}t + \frac{1}{2}a_{y}t^{2} \\ \overrightarrow{r_{f}} &= \left(x_{i} + v_{xi}t + \frac{1}{2}a_{x}t^{2}\right)\vec{i} + \left(y_{i} + v_{yi}t + \frac{1}{2}a_{y}t^{2}\right)\vec{j} \\ &= \overrightarrow{r_{i}} + \overrightarrow{v}t + \frac{1}{2}\overrightarrow{a}t^{2} \end{aligned}$$

Jan. 28, 2002

Example 4.1

A particle starts at origin when t=0 with an initial velocity \mathbf{v} =(20i-15j)m/s. The particle moves in the xy plane with a_x =4.0m/s². Determine the components of velocity vector at any time, t.

$$v_{xf} = v_{xi} + a_{x}t = 20 + 4.0t (m / s)$$

$$v_{yf} = v_{yi} + a_{y}t = -15 (m / s)$$

$$\vec{v}(t) = \{(20 + 4.0t)\hat{i} - 15 \quad \vec{j}\}m / s$$

Compute the velocity and speed of the particle at t=5.0 s.

$$\vec{v} = \left\{ (20 + 4.0 \times 5.0)\vec{i} - 15\vec{j} \right\} m / s = \left(40\vec{i} - 15\vec{j} \right) m / s$$
$$q = \tan^{-1} \left(\frac{-15}{40} \right) = \tan^{-1} \left(\frac{-3}{8} \right) = -21^{\circ}$$

$$= \left| \vec{v} \right| = \sqrt{(v_x)^2 + (v_y)^2}$$

$$40 \)^2 + (-15 \)^2 = 43 \ m \ / \ s$$

12

speed

Determine the *x* and *y* components of the particle at t=5.0 s.

$$x_{f} = v_{xi}t + \frac{1}{2}a_{x}t^{2} = 20 \times 5 + \frac{1}{2} \times 4 \times 5^{2} = 150 m, \quad y_{f} = v_{yi}t = -15 \times 5 = -75 m$$

$$\vec{r_{f}} = x_{f}\vec{i} + y_{f}\vec{j} = (150 \vec{i} - 75 \vec{j})m$$
Jan. 28, 2002
$$(443-501 \text{ Spring 2002})$$

$$Dr. J. Yu. Lecture #3$$

Ì

Projectile Motion

Fig04-06.ip

- A 2-dim motion of an object under the gravitational acceleration with the assumptions
 - Free fall acceleration, -*g*, is constant over the range of the motion
 - Air resistance and other effects are negligible
- A motion under constant acceleration!!!! → Superposition of two motions
 - Horizontal motion with constant velocity and
 - Vertical motion under constant acceleration

Show that a projectile motion is a parabola!!!

$$\vec{a} = a_x \vec{i} + a_y \vec{j} = -g \vec{j}$$

$$v_{xi} = v_i \cos q_i, v_{yi} = v_i \sin q$$

$$x_f = v_{xi} t = v_i \cos q_i t$$

$$y_f = v_{yi} t + \frac{1}{2} (-g) t^2$$

$$= v_i \sin q_i t - \frac{1}{2} g t^2$$

$$t = \frac{x_f}{v_i \cos \boldsymbol{q}_i}$$

$$y_f = v_i \sin \boldsymbol{q}_i \left(\frac{x_f}{v_i \cos \boldsymbol{q}_i}\right) - \frac{1}{2} g \left(\frac{x_f}{v_i \cos \boldsymbol{q}_i}\right)^2$$

$$= x_f \tan \boldsymbol{q}_i - \left(\frac{g}{2v_i^2 \cos^2 \boldsymbol{q}_i}\right) x_f^2$$

Jan. 28, 2002

1443-501 Spring 2002 Dr. J. Yu, Lecture #3

13

Example 4.2

A ball is thrown with an initial velocity $\mathbf{v}=(20\mathbf{i}+40\mathbf{j})\mathbf{m/s}$. Estimate the time of flight and the distance the ball is from the original position when landed.

Which component determines the flight time and the distance?

Horizontal Range and Max Height

- Based on what we have learned previously, one can analyze a projectile motion in more detail
 - Maximum height an object can reach

Maximum Range and Height

What are the conditions that give maximum height and range in a projectile motion?

Example 4.5

 A stone was thrown upward from the top of a building at an angle of 30o to horizontal with initial speed of 20.0m/s. If the height of the building is 45.0m, how long is it before the stone hits the ground?

$$v_{xi} = v_i \cos \mathbf{q}_i = 20 .0 \times \cos 30^\circ = 17 .3 m / s$$

$$v_{yi} = v_i \sin \mathbf{q}_i = 20 .0 \times \sin 30^\circ = 10 .0 m / s$$

$$y_f = -45 .0 = v_{yi} t - \frac{1}{2} gt^{-2}$$

$$gt^{-2} - 20 .0 t - 90 .0 = 9 .80 t^2 - 20 .0 t - 90 .0 = 0$$

$$t = \frac{20 .0 \pm \sqrt{(-20)^2 - 4 \times 9 .80} \times (-90)}{2 \times 9 .80}$$

$$t = -2 .18 s \text{ or } t = 4 .22 s$$

$$\therefore t = 4 .22 s$$

• What is the speed of the stone just before it hits the ground?

$$v_{xf} = v_{xi} = v_{i} \cos \mathbf{q}_{i} = 20 .0 \times \cos 30^{\circ} = 17 .3 m / s$$

$$v_{yf} = v_{yi} - gt = v_{i} \sin \mathbf{q}_{i} - gt = 10 .0 - 9 .80 \times 4 .22 = -31 .4 m / s$$

$$|v| = \sqrt{v_{xf}^{2} + v_{yf}^{2}} = \sqrt{17 .3^{2} + (-31 .4)^{2}} = 35 .9 m / s$$

Jan. 28, 2002

Uniform Circular Motion

- A motion with a constant speed on a circular path.
 - The velocity of the object changes, because the direction changes
 - Therefore, there is an acceleration

