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1443-501 Spring 2002
Lecture #6

Dr. Jaehoon Yu
Motion with Resistive Forces
Resistive Force in Air at High Speed
Analytical and Numerical Methods
Review Examples

Physics Clinic Hours Extened!!
Mon. = Thu. till 6pm

Thursday: 6-9pm by appointments
(e-mail to Andre Litvin_andrey litvin@yahoo.com

Mustafa symmetry80@hotmail.corm)

1tterm exam on Monday Feb. 11, 2002, at 5:30pm, in the classroom!!
Will cover chapters 1-6!!




Resistive Force Proportional to Speed

‘ Since the resistive force Is proportional to speed, we can write R=pbv ‘

R | Let’s consider that a ball of mass m is falling through a liquid. |
v dF=FrR N This equation also tells you that
l mg aF =0 éFy=m\Zj-bv=rra=mE
®_g-2y dv _ L e =
dt n E—Q'EV—Q,WGHV—

Increases and the acceleration decreases, eventually reaching 0.

The above equation also tells us that as time goes on the speed @hat does this mean?

An object moving in a viscous medium will obtain speed to a certain speed (terminal speed)
and then maintain the same speed without any more acceleration.

What iS the V= ?- e'%g, v=0when t =0;
terminal speed How do the speed b g

The time needed to
reach 63.2% of the

: _dv_mg b _-%g X _ . .
nabove case | Saccelerton |2 = =Ry an s amgum 10 |t
' dv_mg b iy mg b o We_ b
B B =1 T o we T b m& re” g9 v | constant t=mib
dt
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Example 6.11

A small ball of mass 2.00q is released from rest in a large vessel filled with oll,
where it experiences a resistive force proportional to its speed. The ball reaches a
terminal speed of 5.00 cm/s. Determine the time constant t and the time it takes the
ball to reach 90% of its terminal speed.

R Determine the

@ time constant t.

'}
Vmg

Determine the time it takes
the ball to reach 90% of its
terminal speed.

Feb. 6, 2002

_ g
b
\ p= MY 2.00" 10 *kg *9.80m/ s
V, 500" 10°*m/s
2.00” 10 3kg
0.392kg /s

Vi

=0.392kg /s

=5.10" 10 3s

m
t =—=
b

_ g -6 X6
v=—2@8. et 0=y@-e 10
bgf1 @ tgi @
s
0.9v, = vtgi- e /%
'gi- e'%%= 0.9: e X =01

t=-t ¥n0.1=2.30t =2.30>6.10" 10" ° =11.7(ms)
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Air Drag

For objects moving through air at high speed, the resistive force
Is roughly proportional to the square of the speed.

The magnitude of 1 D A 5 D: Drag Coefficient (dim.less)
. = —r AV r: Density of Air
such resistive force 2 A: Cross section of the object
R Let’s analyze a falling object through the air
o 1 2
|, l Force aFy:rnay:EDrAV_n‘g
g .
. Dr A
Acceleration a, = 6——2v2 - g
e 2m g
Terminal Speed  a, = g‘ED'rA-‘?v2 -g=0; v, = 2mg
e 2m g Dr A
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Example 6.4

A pitcher hurls a 0.145 kg baseball past a batter at 40.2m/s (=90 mi/h).
Determine the drag coefficients of the air, density of air is 1.29kg/m?3, the
radius of the ball is 3.70cm, and the terminal velocity of the ball in the air is
43.0 m/s.

Uit A=pr2 =p(0.0370)* = 4.30" 10"3(m?)

formula for 2 2>0.145 »0.80

terminal speed D = mgz = - 108 7 =2y
rAv?  1.29x4.30" 10°°¥43.0)

Find the resistive force acting on the ball at this speed.

R= % Dr AV’ :%>o.277>q.29x4.30' 10°40.2)° =1.24N
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Analytical Method vs Numerical Method

The method of solving problems using cause and

S L N effect relationship and mathematical expressions

When solving for a motion of an object we follow the procedure:

Find all the forces involved in the motion

Compute the net force

Compute the acceleration

Integrate the acceleration in time to obtain velocity
Integrate the velocity in time to obtain position

ok WD =

But not all problems are analytically solvable due to complex conditions applied to
the given motion, e.g. position dependent acceleration, etc.

_ The method of solving problems using approximation and
Numerical Method:  computational tools, such as computer programs, stepping
through infinitesimal intervals €= Integration by numbers...
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The Euler Method

Simplest Numerical Method for solving differential equations,
by approximating the derivatives as ratios of finite differences.

Speed and the magnitude of Dv V(t 4 Dt) _ V(t)
Acceleration can be approximated a(t) » =
In a small increment of time, Dt Dt Dt

Thus the Speed at time t+Dt is V(t + Dt) » V(t) + a(t)Dt

In the same manner, the position of Dx X(t 4 Dt)- X(t)
an object and speed are approximated V(t) » =

in a small time increment, Dt Dt Dt

1 2
And the position at time t+Dt Is X(t ¥ Dt) ” X(t) ¥ V(t)Dt * 2 a(t )(Dt)
We then use the approximated expressions to | 74 fétﬂg{%@ X(t + Dt) » X(t) i V(t)Dt +0
compute position at infinitesimal time

interval, Dt, with computer to find the The (DE)?is ignored in Euler

. . . . method because it is closed to 0.
posmon’of an object at any given time )1 Spring 2002 .
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Unit Conversion: Example 1.4

US and UK still use British Engineering units: foot, Ibs, and
seconds

— 1.0in=2.54 cm, 1ft=0.3048m=30.48cm

— 1m=39.37in=3.281ft~1yd, 1mi=1609m=1.609km

— 1lb=0.4535kg=453.59, 10z=28.35¢9=0.02835kg

— Online unit converter:

Example 1.4: Determine density in basic Sl units (m,kg )

_ M
r = —
V
V=L D H=(5.3cm) (5.35cm)” (5.35cm) =(5.35)%cm?
= 3
B3 =153 .130m = >0 BB _ 453 43 10 m?
gk M=856¢ (100 cm / m)
AL (§M=856g= 869  _ .85 kg
Jo% 1000 g / kg
— &
=5.35¢cm < peM 086l g ggag e
V 153 .13 10 "°m
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Fig02-01.ip

Example 2.1

%4 Interactive Physics - [figd2-01] I ] ¢ * Flnd the dISp|aCement,
Fle Edt ‘World View Object Define Measure Script Window  Help -8 x| average Ve|OC|ty’ and
D|S|d| #|2(@| 82| [y 5|Al2|2] Runr|stpn] Reset] average speed.
olo s Jf® Xp=+52M -3 o Displacement;
2| O] b3 M& b= B01s R _
T [X° x - x=-53 30=-83mM
£l ; ity:
sine| 2  Average Velocity:
LU P S Xf:'53m VXOXf-)G:DX:-SS:-]_j(m/S)
o|ul| L= o 3 t=50sec t-t Dt 50
z=| | B T/ 240 00 s « Average Speed:
#|© Time ——» s ,
—— . 7 Total Distance Traveled
a8 > VO _ -
{?\F\Qqﬁ IIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|II!IIIIII|IIIIIIIII|I Total Tlmelntaval
A5 I Ill A0 400 00 200 4000 00 iﬂ? 29 4ED+E3 197
| ] [Too e + 52 +
= =2.5(m/s)
50 50
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Example 2.2

* Particle is moving along x-axis following the expression:| x = - 4t + 2t2
 Determine the displacement in the time intervals t=0 to t=1s and
t=11to t=3s: Forinterval |x_, =0,%x,=-4" ()+2" °*=-2
FOtoE=ls DXi201 = Xo1 = X0 =-2- 0=-2(m)

Forinterval X =-2,%_,=-4" (3)+2" (3)*=6
FHOTES [DKys = X~ % =6+2=8(m)

« Compute the average velocity in the time intervals t=0 to t=1s

and t=1to t=3s: I;‘ _ DXeos _ - 2(m/s) e = DXas _ 8 _ +4(m/ s)
Dt 1 Dt 2

« Compute the instantaneous velocity at t=2.5s:
Instantaneous velocity at any time t Instantaneous velocity at t=2.5s

S Dx_dx_d (- at+2?)=-a+at| [ult=25=-4+4 (25=+qm'9
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Kinetic Equation of Motion in a Straight
Line Under Constant Acceleration

Vi (t) = Wi + axt Velocity as a function of time
X - Xi = i—t — i(vxf Y ')’[ Displacement as a function
| | ’ 2 . of velocity and time

1
X - Xi = Wit +§axt2

Vi =Vii® + 28X - X)

Displacement as a function of
time, velocity, and acceleration

Velocity as a function of
Displacement and acceleration

You may use different forms of Kinetic equations, depending on the

Information given to you for specific physical problems!!
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Example 2.12

Stone was thrown straight upward at t=0 with +20.0m/s initial velocity on the roof
of a 50.0m high building,
Find the time the stone reaches at maximum height (v=0) g=-9.80m/s?
Find the maximum height
Find the time the stone reaches its original height
Find the velocity of the stone when it reaches its original height
5. Find the velocity and position of the stone at t=5.00s

= W

ﬂvf = vy + ayt = +20.0- 9.80t = 0.00

2y =y +Vyit+%ayt2
t:@ =2.04s
9.80

=50.0+20" 2.04+ % (-9.80)" (2.04)?

t=2.04" 2=4.08s| | Other ways? | |=50.0+ 20.4=70.4(m)

wi =Wwi+at =20.0+(-9.80)" 4.08=-20.0(m/s)

Vyi = Vyi + ayt 1 , —
f = Vi it —ayt _
\5/—e|OCiJ[y = 20.0+ (- 9.80) © 5 00 yr=yitwit+ > ay 1 5-Position
=-29.0(m/s) =50.0+20.0" 5.00 +E’ (-9.80) " (5.00)? = +27.5(m)
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Example 3.1

Cartesian Coordinate of a point in the xy plane are (x,y)= (-3.50,-
2.50)m. Find the polar coordinates of this point.

r = \/(Xl2 + y12) —
y ) : -
A JI- 3.50) + (- 2.50))
g =+/18.5 =4.30(m)
X q =180 +q,
g r _-250 5
%= 350 7
(-3.50,-2.50)m a& )
gs = tan 12 2=35.5
el
N g =180 +q, =180° +35.5" = 216°
Feb. 6, 2002 1443-501 Spring 2002 13
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2-dim Motion Under Constant Acceleration

—

» Position vectors inxy plane: [r=xi+y | [ =xi+y,]

—_—

.i+vyij Vi SVl TV, |

 Velocity vectors in xy plane: |v. =v

Ve =V +at,v, =v, +at

\Z = (in +axt)i+(vyi +ayt)J :\Z+&

« How are the position vectors written in acceleration vectors?

1 1

Xg =X +Vt+—ati,y, =y +vt+ —att
2 2

. 1 --:> 1 --_->

& 2 g e 2 @
— — 1 —
=r +vt+ —at’
2
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Example 4.1

A particle starts at origin when t=0 with an initial velocity v=(20i-15j)m/s.
The particle moves in the xy plane with a,=4.0m/s?. Determine the

components of velocity vector at any time, t.

v t 20 + 4.0t(m / s)
Vi, =V, ,2t = -1 (m /s)
\T(t):{(zo + 4.0t) - 15 T}m/s

Compute the velocity and speed of the particle at t=5.0 s.

Vg = X X

+ a
+ a

v={(20+4.0° 5.0) - 15jm/s = 40i - 15] jn/s| |speed = [v[= /(v ) + (v,
g 0 :\/(40)2+(-15)2:43m/s

Determine the x and y components of the particle at t=5.0 s.

X, :vxit+%axt2:20' 5+%' 4" 52=150m, y, =v,t=-15"5=-75m

([ =X, i+Yy,]= (150i’- 75 j’)n
Feb. 6, 2002 1223501 Spring 20072 15
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Ex04-05a.ip

Example 4.5

how long is it before the stone hits the ground?

A stone was thrown upward from the top of a building at an angle of 30° to
horizontal with initial speed of 20.0m/s. If the height of the building is 45.0m,

vV, = v,cos q, =20 .0" cos 30 ° =17 .3m /s
Vg =v;sn g; =20 .0" sn 30 ° =10 .0m /s
_ _ 1 2
yf—-45.O—Vyit-2—gt
gt > - 20 .0t- 90 .0 = 9.80 t* - 20 .0t- 9 .0 = O
20 .0+ /(- 20 ) - 4" 9.80 ° (- 90 )
2~ 9.80
t = -2.18 sor t = 4.22 s
\ t = 4.22 s
« What is the speed of the stone just before it hits the ground?
Vy =V, =V,c08 g, =20 .0" cos 30 ° =17 .3m /s
Vi =V, - gt =v;sinq;- gt =10.0- 9.80 " 4.22 = -31 .4m /s
V= Afvy + vy, =17 .32+ (-31.4) =35.9m /s
Feb. 6, 2002 1443-501 Spring 2002 16
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Uniform Circular Motion

A motion with a constant speed on a circular path.
— The velocity of the object changes, because the direction

chang

€S

— Therefore, there is an acceleration

-l

[

Average —~ vi-vi_Dv ‘D\?‘ ‘Dr‘ . ‘DF‘ oy ‘Dr‘
- a= = q = = ‘Dv‘—v— a=———
Acceleration t, -t Dt v r r Dt _r
Instantaneous _ lprly .y 2| Isthiscorrect in
Acceleration [& = lim a=lim ——=—=v" ==-—| dimension?

Feb. 6, 2002

What story is this expression telling you?
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Relative Velocity and Acceleration

The velocity and acceleration in two different frames of
references can be denoted:

- =1 - vt
A crame S Y Erame S Galilean R °
Vo transformation |dr*_dr -
[ . - -V
L ‘ equation ﬂdt ) di
L - -~ V=V-V,
O vt O What does this tell you?
r'=r - \Zt <|>:§: The accelerations measured in two frames are the
- ~ — same when the frames move at a constant velocity
dv = dv - dv, with respect to each other!!!
_,d : - . d_t, _ The earth’s gravitational acceleration is the same in
a'= a,when v, is constant a frame moving at a constant velocity wrt the earth.

Feb. 6, 2002
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Example 4.9

A boat heading due north with a speed 10.0km/h is crossing the river whose
stream has a uniform speed of 5.00km/h due east. Determine the velocity of
the boat seen by the observer on the bank.

_—

N VBB' = VBR' TV,
o —|2 —2 2 2
Vaa | = +/Ver| +[Va| =+/@0.07 +(5.00) =11.2km /h
V — g . U
R ““ Vgg =10.0 jand v, =5.00 i
> U U
V., =5.00i+10.0 |
VBR VBB g = tan 1 &V ggy g: - -1865.00 9= 6 6°
> E ngBX o el0.0 g
How long would it take for | [Ves€0Sd - t=3.0km
the boat to cross the river if | [f=—30 _ 30 _435nrs=18min
the width is 3.0km? Vs C0Sq 112" c0Si26.6')
Feb. 6, 2002 1443-501 Spring 2002 19
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Force

We've been learning kinematics; describing motion without understanding
what the cause of the motion was. Now we are going to learn dynamics!!

Es are what cause an object to move

Can someone tell me _ _
: 9
what EORCE is? The above statement is not entirely correct. Why?

Because when an object is moving with a constant velocity
no force Is exerted on the object!!!

FORCEsS are what cause any change in the velocity of an object!!

What does this statement mean? | When there is force, there is change of velocity.
Forces cause acceleration.

What happens there are several Forces are vector quantities, so vector sum of all
forces being exerted on an object? | forces, the NET FORCE, determines the motion of

the object.
F, ' F, NET FORCE, When net force on an objectis 0, the has
F=F+F, constant velocity and is at its equilibrium!!
Feb. 6, 2002 1443-501 Spring 2002 20
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1st Law:
Law of Inertia

2nd | aw:
Law of Forces

Newton’'s Laws

In the absence of external forces, an object at rest
remains at rest and an object in motion continues
In motion with a constant velocity.

The acceleration of an object is directly proportional to

é E. — e the neft fo’rce exerted on it and inversely proportional to
i the object’s mass.

3" Law: — :
Law of Action If two objects interact, the force, F,,, exerted on object 1
and Reaction | By object 2 is equal magnitude_to and opp(_)site direction
— —7] | to the force, F,,, exerted on object 1 by object 2.
F,=-F,

Feb. 6, 2002 1443-501 Spring 2002 21
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Example 5.1

Determine the magnitude and direction of acceleration of the puck whose
mass is 0.30kg and is being pulled by two forces, F1 and F2, as shown in the
picture, whose magnitudes of the forces are 8.0 N and 5.0 N, respectively.

Components |Fix =

.|cos g, = 8.0 cos (60"): 4.0N

of Fy F,, = |F,|sn q, =8.0" sin (60 °)=6.9N
q,=60° Components |F, = ‘F_Z’ cos q, =5.0" cos (- 20° )= 4.7N
- » of F g
G,=-20° 2 Foy = |Fs|sna, =50 sn( 20°)=-1.7N
Componentsof  |F, =F,, + F,, =4.0+4.7=8.7N = ma ,
totalforce F  |F =F, +F, =6.9-1.7=52N=ma ,
SRS S -5, _52
I\/Iagnitudeand ax—m—0.3—29m/s ay—m—03—17"m/s
direction of = V@ Y + @y =samis?, 12 2 HE 0o g0
. %]
acceleratona |- o v o v oy
a=a,i+a, j=¢29 i+17 jtm/s
e 2
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Example 5.4

A traffic light weighing 125 N hangs from a cable tied to two other cables
fastened to a support. The upper cables make angles of 37.0° and 53.0°
with the horizontal. Find the tension in the three cables.

Free-body
Diagram

i=3 =
F=T,+T,+T,; F, =3 T,=0; F, =3 T, =0

1

1
o

T,dn (37 °)+ T, sn (53) mg
- T, cos (37 °)+ T, cos (53 °): 0
COS (53)
cos (37°)
T,lsn (53°)+0.75 “~sn (37 ) =1.25T, =125 N
T,=100 N; T,=0.754 T, =75 .4N

\ T, = T, =0.754 T,

Feb. 6, 2002 1443-501 Spring 2002
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Example 5.12

Suppose a block is placed on a rough surface inclined relative to the horizontal. The
Inclination angle is increased till the block starts to move. Show that by measuring
this critical angle, g, one can determine coefficient of static friction, m.

y
n
Free-body fsf mn F:_I\g(a
Diagram
= \ F=-Mg

F

F,=Ma,=n+F =0, n=-F_ =Mgcosq,
F.=F,- ;=0 f,=mn=Mgsnq,
Mgsng, _ Mgsnq, _

= = = tan
i n Mg cosq, e

Feb. 6, 2002 1443-501 Spring 2002
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Example 6.8

A ball of mass m is attached to the end of a cord of length R. The ball is moving in a

vertical circle. Determine the tension of the cord at any instant when the speed of
the ball is v and the cord makes an angle g with vertical.

What are the forces involved in this motion?

m The gravitational force F; and the
T radial force, T, providing tension.
R il a F,=ma, =mg sn q
a, = gsnq
o V2
a F, =T - mg cos q :mar:mF

2

T :maev—+gcosq
¢ R

Q |-I-O:

At what angles the tension becomes maximum and minimum. What are the tension?

Feb. 6, 2002 1443-501 Spring 2002 25
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Example 6.9

A ball of mass m is is hung by a cord to the ceiling of a boxcar that is moving with an
acceleration a. What do the inertial observer at rest and the non-inertial observer

traveling inside the car conclude? How do they differ?

g

o

Frame

Inertial 7 /CII
9

F,=mg

J /QI
|:fic
EFg:mg

Feb. 6, 2002

Non-Inertial
Frame

—

This is how the ball looks like no matter which frame you are in.

How do the free-body diagrams look for two frames?

_— —

4 F=F, +T
é F,.=ma, =ma_ =T4d4n q
é F,=Tcosqg-mg =0
T = mg a,=gtan ¢
cos q

P ——
an g+T+FfIC
é. F =Tsinq- F;.=0; Fy.=mag, =Tsing
a F, =Tcogy - mg=0
T:ﬂ’ aflc:gtmq

cogy

1443-501 Spring 2002
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‘ How do the motions interpreted in these two frames? Any differences?

For an inertial frame observer, the forces
being exerted on the ball are only T and F,.
The acceleration of the ball is the same as
that of the box car and is provided by the x
component of the tension force.

In the non-inertial frame observer, the forces
being exerted on the ball are T, Fy, and F.

For some reason the ball is under a force,
F., that provides acceleration to the ball.

While the mathematical expression of the
acceleration of the ball is identical to that of
inertial frame observer’s, the cause of the
force is dramatically different.




