1443-501 Spring 2002 Lecture #9 Dr. Jaehoon Yu

- 1. Conservative Forces and Potential Energy
- 2. Conservation of Mechanical Energy
- 3. Work done by non-conservative forces
- 4. How are conservative forces and potential energy related?
- 5. Equilibrium of a system
- 6. General Energy Conservation
- 7. Mass-Energy Equivalence

Conservative Forces and Potential Energy

The work done on an object by a conservative force is equal to the decrease in the potential energy of the system

$$W_c = \int_{x_i}^{x_f} F_x dx = -\Delta U$$

What else does this statement tell you?

The work done by a conservative force is equal to the negative of the change of the potential energy associated with that force.

Only the changes in potential energy of a system is physically meaningful!!

We can rewrite the above equation in terms of potential energy U

So the potential energy associated with a conservative force at any given position becomes

$$\Delta U = U_f - U_i = -\int_{x_i}^{x_f} F_x dx$$

$$U_f(x) = -\int_{x_i}^{x_f} F_x dx + U_i$$

Potential energy function

What can you tell from the potential energy function above?

Since U_i is a constant, it only shifts the resulting $U_f(x)$ by a constant amount. One can always change the initial potential so that U_i can be 0.

ex c

Conservation of Mechanical Energy

Total mechanical energy is the sum of kinetic and potential energies

$$E \equiv K + U$$

Dr. J. Yu, Lecture #9

A ball of mass *m* is dropped from a height *h* above the ground. Neglecting air resistance determine the speed of the ball when it is at a height *y* above the ground.

h 	m m m	Using the principle mechanical energy conservation	of	$K_{i} + U_{i} = K_{f} + U_{f}$ $0 + mgh = \frac{1}{2}mv^{2} + mgy$ $\frac{1}{2}mv^{2} = mg(h - y)$ $\therefore v = \sqrt{2g(h - y)}$	
у	/	b) Determine the speed of the ball at y if it had initial speed v_i at the time of release at the original height h.			
		Again using the principle of mechanic energy conservation but with non-zero initi kinetic energy!!!	al $\frac{K}{\frac{1}{2}}n$ $\frac{1}{2}n$	$+ U_{i} = K_{f} + U_{f}$ $mv_{i}^{2} + mgh = \frac{1}{2}mv_{f}^{2} + mgy$ $m\left(v_{f}^{2} - v_{i}^{2}\right) = mg\left(h - y\right)$	
Th	nis result look ver pression, doesn'i	y similar to a kinematic	∴ v	$v_f = \sqrt{v_i^2 + 2 g (h - y)}$	
Feb. 2	20, 2002	144 Dr.	43-501 Sprin . J. Yu, Lect	ng 2002 ure #9	1

A ball of mass *m* is attached to a light cord of length L, making up a pendulum. The ball is released from rest when the cord makes an angle θ_A with the vertical, and the pivoting point P is frictionless. Find the speed of the ball when it is at the lowest point, B.

¹⁴⁴³⁻⁵⁰¹ Spring 2002 Dr. J. Yu, Lecture #9

Work Done by Non-conserve Forces

Mechanical energy of a system is not conserved when any one of the forces in the system is a non-conservative force.

Two kinds of non-conservative forces:

Applied forces: Forces that are <u>external</u> to the system. These forces can take away or add energy to the system. So the <u>mechanical energy of the</u> <u>system is no longer conserved.</u>

If you were to carry around a ball, the force you apply to the ball is external to the system of ball and the Earth. Therefore, you add kinetic energy to the ball-Earth system.

$$W_{you} + W_g = \Delta K; \quad W_g = -\Delta U$$
$$W_{you} = W_{app} = \Delta K + \Delta U$$

Kinetic Friction: <u>Internal</u> non-conservative force that causes irreversible transformation of energy. The friction force causes the kinetic and potential energy to transfer to internal energy

$$W_{friction} = \Delta K_{friction} = -f_k d$$
$$\Delta E = E_f - E_i = \Delta K + \Delta U = -f_k d$$

A skier starts from rest at the top of frictionless hill whose vertical height is 20.0*m* and the inclination angle is 20°. Determine how far the skier can get on the snow at the bottom of the hill with a coefficient of kinetic friction between the ski and the snow is 0.210.

How are Conserve Forces related to Potential Energy?

Work done by a force component on an object through a displacement Δx is

For an infinitesimal displacement Δx

$$W = F_x \Delta x = -\Delta U$$
$$\lim_{\Delta x \to 0} \Delta U = \lim_{\Delta x \to 0} F_x \Delta x$$
$$dU = -F_x dx$$

Results in the conservative force-potential relationship

$$F_x = -\frac{dU}{dx}$$

X

This relationship says that any conservative forces acting on an object within a given system is the same as the negative derivative of the potential energy of the system with respect to position.

Does this statement make sense?

1. spring-ball system:
$$F_s = -\frac{dU_s}{dx} = -\frac{d}{dx} \left(\frac{1}{2}kx^2\right) = -k$$
2. Earth-ball system: $F_g = -\frac{dU_g}{dy} = -\frac{d}{dy}(mgy_g) = -mg$

The relationship works in both the conservative force cases we have learned!!!

Feb. 20, 2002

Energy Diagram and the Equilibrium of a System

One can draw potential energy as a function of position \rightarrow Energy Diagram

Let's consider potential energy of a spring-ball system

What shape would this diagram be?

$$U = \frac{1}{2}kx^2$$

What does this energy diagram tell you?

- 1. Potential energy for this system is the same independent of the sign of the position.
- 2. The force is 0 when the slope of the potential energy curve is 0 with respect to position.
- 3. x=0 is one of the stable or equilibrium of this system when the potential energy is minimum.

Position of a stable equilibrium corresponds to points where potential energy is at a minimum.

Position of an unstable equilibrium corresponds to points where potential energy is a maximum.

General Energy Conservation and Mass-Energy Equivalence

General Principle of Energy Conservation The total energy of an isolated system is conserved as long as all forms of energy are taken into account.

What about friction?

Friction is a non-conservative force and causes mechanical energy to change to other forms of energy.

However, if you add the new form of energy altogether the system as a whole did not lose any energy, as long as it is self-contained or isolated.

In the grand scale of the universe, no energy can be destroyed or created but just transformed or transferred from one place to another. <u>Total energy of universe is constant.</u>

Principle of Conservation of Mass

Einstein's Mass-Energy equality. Feb. 20, 2002

In any physical or chemical process, mass is neither created nor destroyed. Mass before a process is identical to the mass after the process.

How many joules does your body correspond to?

The sun converts 4.19x10⁹kg of mass into energy per second. What is the power output of the sun?

Using Einstein's mass-energy equality

$$E_{R} = mc^{2}$$

= 4.19×10⁹×(3×10⁸)²
= 37.7×10²⁵ J

 $P = 37.7 \times 10^{25} W$

Since the sun gives out this amount of energy per second the power is simply

$$N_{60W} = \frac{P}{60} = 6.28 \times 10^{24} W$$

$$E = P \times t = 37 \cdot .7 \times 10^{-25} \times 8$$

= 3 \cdot 02 \times 10^{-27} kWh
Cost = \$3 \cdot 02 \times 10^{-27} \times 0 \cdot 09
= \$2 \cdot 72 \times 10^{-26}

Feb. 20, 2002