
1443-501 Spring 2002
Lecture #10
Dr. Jaehoon Yu

1. Term exam results
2. Linear Momentum 
3. Momentum Conservation
4. Impulse and Momentum
5. What are Collisions?
6. Elastic and Inelastic collisions
7. Two dimensional collisions

Homework: http://hw.utexas.edu/studentInstructions.html – Do Homework #2.
Term Exam Answer Key: A new link on my web page http://www-hep.uta.edu/~yu
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This mean 
value is what 
I am going to 
use to scale!!

Some of you have done 
rather well.
But most of you have 
done not as well as I 
was hoping for.
What I expected was 
about twice as much as 
what your mean value is.
Please do homework 
for extra credit and for 
yourselves!!
Might introduce pop-
quiz after mid-term.
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Linear Momentum
The principle of energy conservation can be used to solve problems 
that are harder to solve just using Newton’s laws.   It is used to 
describe motion of an object or a system of objects.
A new concept of linear momentum can also be used to solve physical 
problems, especially the problems involving collisions of objects.

vmp =
Linear momentum of an object whose mass is m 
and is moving at a velocity of v is defined as 

1. Momentum is a vector quantity.
2. The heavier the object the higher the momentum
3. The higher the velocity the higher the momentum
4. Its unit is kg.m/s 

What can you tell from this 
definition about momentum?

What else can use see from the 
definition?  Do you see force?

The change of momentum in a given time interval

( )
dt

vd
mvm

dt
d

dt
pd

== Fam ==
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Linear Momentum and Forces
What can we learn from this 
Force-momentum relationship?

Something else we can do 
with this relationship.  What 
do you think it is?

( )vm
dt
d

dt
pd

F ==

The relationship can be used to study 
the case where the mass changes as a 
function of time.

Can you think of a 
few cases like this?

Motion of a meteorite Trajectory a satellite 

• The rate of the change of particle’s momentum is the same as the
net force exerted on it.

• When net force is 0, the particle’s linear momentum is constant.
• If a particle is isolated, the particle experiences no net force, 

therefore its momentum does not change and is conserved.
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Conservation of Linear Momentum in a Two 
Particle System

Consider a system with two particles that does not have any external 
forces exerted on it.    What is the impact of Newton’s 3rd Law?

Now how would the momenta
of these particles look like?

If particle#1 exerts force on particle #2, there must be another force that 
the particle #2 exerts on #1 as the reaction force.   Both the forces are 
internal forces and the net force in the SYSTEM is still 0. 

Let say that the particle #1 has momentum 
p1 and #2 has p2 at some point of time.

Using momentum-
force relationship dt

pd
F

dt
pd

F 2
12

1
21  and  ==

And since net force 
of this system is 0

constpp =+ 12
Therefore

( ) 012
12

2112 =+=+=+=∑ pp
dt
d

dt
pd

dt
pd

FFF

The total linear momentum of the system is conserved!!!
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More on Conservation of Linear Momentum in 
a Two Particle System

What does this mean? As in the case of energy conservation, this means 
that the total vector sum of all momenta in the 
system is the same before and after any interaction

Mathematically this statement can be written as 

Whenever two or more particles in an 
isolated system interact, the total 
momentum of the system remains constant.

constppp =+=∑ 12

From the previous slide we’ve learned that the total 
momentum of the system is conserved if no external 
forces are exerted on the system.

ffi pppp
i 1212 +=+

This can be generalized into 
conservation of linear momentum 
in many particle systems.

∑∑∑∑∑∑ ===
system

zf
system

zi
system

yf
system

yi
system

xf
system

xi PPPPPP   ;  ;
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Example 9.1
Estimate an astronaut’s resulting velocity after he throws his book to a 
direction in the space to move to a direction.

BBAAfi vmvmpp +=== 0

From momentum conservation, we can writevA vB

Assuming the astronaut’s mass if 70kg, and the book’s 
mass is 1kg and using linear momentum conservation

B

A

BB
A v

m
vm

v
70
1

−=−=

Now if the book gained a velocity 
of 20 m/s in +x-direction, the 
Astronaut’s velocity is

( ) ( )smiiv A /3.020
70
1

−=−=
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Example 9.2
A type of particle, neutral kaon (K0)  decays (breaks up) into a pair of particles called 
pions (π+ and π-) that are oppositely charged but equal mass.  Assuming K0 is 
initially produced at rest, prove that the two pions must have mumenta that are equal 
in magnitude and opposite in direction.

−+ +→ ππ0K
This reaction can be written as

−+ += ππ pppK 0

Since K0 is produced at rest its 
momentum is 0.  

K0

π+ π−

pπ+ pπ−

Since this system consists of a K0 in the initial state 
which results in two pions in the final state, the 
momentum must be conserved.  So we can write

−+

−+

−=

=+=

ππ

ππ

pp

ppp K 00

Therefore, the two pions from this kaon decay have the 
momanta with same magnitude but in opposite direction.
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Impulse and Linear Momentum 

By integrating the above 
equation in a time interval ti to 
tf, one can obtain impulse I.

Impulse of the force F acting on a particle over the time 
interval ∆t=tf-ti is equal to the change of the momentum of 
the particle caused by that force.   Impulse is the degree of 
which an external force changes momentum.

The above statement is called the impulse-momentum theorem and is equivalent to Newton’s second law.  

dtFpd
dt

pd
F ==    ;

Net force causes change of momentum è
Newton’s second law

So what do you 
think an impulse is?

∫∫ =∆=−= f

i

f

i

t

tif

t

t
dtFppppd pdtFI f

i

t

t
∆=≡ ∫

What are the 
dimension and 
unit of Impulse?  
What is the 
direction of an 
impulse vector? 

Defining a time-averaged force 

∫∆
≡ f

i

t

t
dtF

t
F

1

Impulse can be rewritten 

tFI ∆≡

If force is constant  

tFI ∆≡
It is generally approximated that the impulse force exerted acts
on a short time but much greater than any other forces present.
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Example 9.3
A golf ball of mass 50g is struck by a club.  The force exerted on the ball by the club 
varies from 0, at the instant before contact, up to some maximum value at which the 
ball is deformed and then back to 0 when the ball leaves the club.  Assuming the ball 
travels 200m.  Estimate the magnitude of the impulse caused by the collision. 

m
g

v
R BB 200

2sin2

==
θ

The range R of a projectile is

Considering the time interval for the 
collision, ti and tf , initial speed and 
the final speed are

Let’s assume that launch angle θi=45o.  
Then the speed becomes:

collision) after thely (immediate/44

collision)  thebeforely (immediate 0

smv

v

f

i

=
=

m
θB

vB

smgvB /441960200 ==×=

Therefore the magnitude of the impulse 
on the ball due to the force of the club is smkg

mvmvpI BiBf

/2.24405.0 ⋅=×=

−=∆=
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Example 9.4
In a crash test, an automobile of mass 1500kg collides with a wall.  The initial and 
final velocities of the automobile are vi=-15.0i m/s and vf=2.60i m/s.  if the collision 
lasts for 0.150 seconds, what would be the impulse caused by the collision and the 
average force exerted on the automobile?

( )
( ) smkgiivmp

smkgiivmp

ff

ii

/ 390060.21500

/ 225000.151500

⋅=×==

⋅−=−×==

Let’s assume that the force involved in the collision is a lot larger than any other 
forces in the system during the collision.   From the problem, the initial and final 
momentum of the automobile before and after the collision is 

Therefore the impulse on the 
automobile due to the collision  is

The average force exerted on the 
automobile during the collision  is

N 1076.1/ 1076.1

150.0
1064.2

525

4

ismkgi

t
p

F

×=⋅×=

×
=

∆
∆

=

( )
smkgismkgi

smkgipppI if

/ 1064.2/ 26400

/ 225003900
4 ⋅×=⋅=

⋅+=−=∆=
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Collisions 

Consider a case of a collision 
between a proton on a helium ion. 

The collisions of these ions never involves a 
physical contact because the electrostatic 
repulsive force between these two become great 
as they get closer causing a collision.

Generalized collisions must cover not only the physical contact but also the collisions 
without physical contact such as that of electrostatic ones in a microscopic scale.

∫=∆ f

i

t

t
dtFp 211t

F F12

F21

Assuming no external forces, the force 
exerted on particle 1  by particle 2, F21, 
changes the momentum of particle 1 is  

Likewise for particle 2 by particle 1  ∫=∆ f

i

t

t
dtFp 122

Using Newton’s 3rd law we obtain   

So the momentum change of the system in the 
collision is 0 and the momentum is conserved

121122 pdtFdtFp
f

i

f

i

t

t

t

t
∆−=−==∆ ∫∫

constant

0

21

21

=+=

=∆+∆=∆

ppp

ppp

system
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Example 9.5
A car of mass 1800kg stopped  at a traffic light is rear-ended by a 900kg car, and 
the two become entangled.  If the lighter car was moving at 20.0m/s before the 
collision what is the velocity of the entangled cars after the collision?

( ) ffff

iiii

vmmvmvmp

vmvmvmp

212211

222211

+=+=

=+=

The momenta before and after the collision are

What can we learn from these equations 
on the direction and magnitude of the 
velocity before and after the collision?

m1

20.0m/s

m2

vf
m1

m2

Since momentum of the system must be conserved

( )

( ) smi
i

mm
vm

v

vmvmm

pp

i
f

if

fi

/ 67.6
1800900

0.20900

21

22

2221

=
+
×

=
+

=

=+

=

The cars are moving in the same direction as the lighter 
car’s original direction to conserve momentum. 
The magnitude is inversely proportional to its own mass.

Before collision

After collision
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Elastic and Inelastic Collisions 

Collisions are classified as elastic or inelastic by the conservation of kinetic 
energy (or momentum) before and after the collisions.

A collision in which the total kinetic energy (and momentum) 
is the same before and after the collision.  

Momentum is conserved in any collisions as long as external forces negligible.

Elastic 
Collision

Two types of inelastic collisions:Perfectly inelastic and inelastic  

Perfectly Inelastic: Two objects stick together after the collision 
moving at a certain velocity together.

Inelastic: Colliding objects do not stick together after the collision but 
some kinetic energy is lost.

Inelastic 
Collision

A collision in which the total kinetic energy is not the same 
before and after the collision.  

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.  
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Elastic and Perfectly Inelastic Collisions 
In perfectly Inelastic collisions, the objects stick 
together after the collision, moving together.  
Momentum is conserved in this collision, so the 
final velocity of the stuck system is

How about elastic collisions?

)(

)(

21

2211

212211

mm
vmvm

v

vmmvmvm

ii
f

fii

+
+

=

+=+

In elastic collisions, both the 
momentum and the kinetic energy 
are conserved. Therefore, the 
final speeds in an elastic collision 
can be obtained in terms of initial 
speeds as 

2
22

2
11

2
22

2
11

22112211

2
1

2
1

2
1

2
1

ffii

ffii

vmvmvmvm

vmvmvmvm

+=+

+=+

( ) ( )
( )( ) ( )( )fifififi

fifi

vvvvmvvvvm

vvmvvm

2222211111

2
2

2
22

2
1

2
11

+−=+−

−=−

( ) ( )fifi vvmvvm 222111

:onconservati momentum dim-1 From

−=−

iifiif v
mm
mm

v
mm

m
vv

mm
m

v
mm
mm

v 2
21

21
1

21

1
22

21

2
1

21
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1

2
   ;

2








+
−

+



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


+

=







+

+







+
−
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Two dimensional Collisions 
In two dimension, one can use components of momentum to apply 
momentum conservation to solve physical problems.

fyfyiyiy

fxfxixix

f

vmvmvmvm

vmvmvmvm

vmvmvmvm fii

22112211

22112211

21121 221

+=+

+=+

+=+

2
22

2
11

2
1 2

1
2
1

2
1

1 ff vmvmvm
i

+=

m2

m1

v1i

m 1

v 1f

θ

m
2

v2f

φ

Consider a system of two particle collisions and scatters in 
two dimension as shown in the picture.  (This is the case at 
fixed target accelerator experiments.)  The momentum 
conservation tells us:

φθ

φθ

sinsin0

coscos

2211221111

2211221111

1121 21

fffyfyiy

fffxfxix

i

vmvmvmvmvm

vmvmvmvmvm
vmvmvm ii

−=+==

+=+=
=+

And for the elastic conservation, 
the kinetic energy is conserved:

What do you think 
we can learn from 
these relationships?
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Example 9.9
Proton #1 with a speed 3.50x105 m/s collides elastically with proton #2 initially at 
rest.  After the collision, proton #1 moves at an angle of 37o to the horizontal axis 
and proton #2 deflects at an angle φ to the same axis.  Find the final speeds of the 
two protons and the scattering angle of proton #2, φ.

Since both the particles are protons m1=m2=mp.
Using momentum conservation, one obtainsm2

m1

v1i

m 1

v 1f

θ

m
2

v2f

φ

0sinsin

coscos

21

211

=−

+=

φθ

φθ

fpfp

fpfpip

vmvm

vmvmvm

Canceling mp and put in all known quantities, one obtains

o0.53

/1011.2

/1080.2
5

2

5
1

=

×=

×=

φ

smv

smv

f

f

From kinetic energy 
conservation:

( ) (3)    1050.3 2
2

2
1

25
ff vv +=×

Solving Eqs. 1-3 
equations, one gets

(2)    sin37sin

(1)   1050.3cos37cos

21

5
21

φ

φ

ff

ff

vv

vv

=

×=+
o

o

Solve this 
at home☺


