1443-501 Spring 2002
Lecture #14

Dr. Jaehoon Yu

1. Work, Power, & Energy of Rotational Motions
2. Review examples of Chapters 1 - 10

Mid-term exam 5:30-6:50pm, this Wednesday, Mar. 13, in the classroom.
Bring your own blue books for additional answer sheets.




Example 10.10

A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is

free to rotate about the pivot in the vertical plane. The rod is released from rest in the

horizontal position what is the initial angular acceleration of the rod and the initial linear
acceleration of its right end?

/2 The only force generating torque is the gravitational force Mg
L L
{ :Fd :FE:MQE: Ia
v Mg )
e X \ 2

Since the moment of inertia of the rod | = @erdm: @LX2| dx:@ 92& 3 _ML
when it rotates about one end is eLa@dpy 3

We obtain Using the relationship between tangential and

angular acceleration
__MgL_ Mgl _3g )

I M2~ 2L _ 39 What does this mean?
T = La _E The tip of the rod falls faster than
an object undergoing a free fall.
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Work, Power, and Energy in Rotation

F Let's consider a motion of a rigid body with a single external
force F exerted on the point P, moving the object by ds.
The work done by the force F as the object rotates

through infinitesimal distance ds=rdq in a time dt is
dW = F>ds = (F sinf )rdq
What is Fsinf ?  The tangential component of force F.

What is the work done by Zero, because it is perpendicular to the
radial component Fcosf ?  displacement.

Since the magnitude of torque is rFsinf,  dW =tdg
_dW _tdg _ How was the power

The rate of work, or power becomes P i dt W defined in linear motion?
The rotational work done by an external force o { =g = aed_w O_ | alw Getlq 0
equals the change in rotational energy. &dt g 8dq ;Fe dt g

The work put in by the external force then

J o W
aW=patdg =
Mar. 11, 2002 143501594 @ Q
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Similarity Between Linear and Rotational Motions

All physical quantities in linear and rotational motions show striking similarity.

Similar Quantity Linear Rotational
Mass Mass M Moment of Inertia
| = ¢r*dm
Length of motion | Distance L Angle g (Radian)
Speed "= w s G
Acceleration 2 = g 2 = G
Force Force F=ma |Torque t =la
Work Work W =g’ Fox Work W =Q'tda
Power P=F » P=tw
Momentum p=my L=1w
Kinetic Energy | Kinetic * =™ * |Rotational k= =5'w"
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2-dim Motion Under Constant Acceleration

* Position vectors in xy plane: |r. = x

>

tY,

i

—_

* Velocity vectors in xy plane: |v

Vi

>

—_—

Vyi |

Ve =V tat,v, =v, +at

0=, rad)i+ b, +an)i=v +a

« How are the position vectors written in acceleration vectors?

“J

17}

—_—

g PR et
2

1 1
X = X +V,t +Eaxt2, Ye =Y Vvt +ant2

= &%, + v, t+%at29|+gy + Vv, t+%at2 ]
e

Mar. 11, 2002 1443-501 Spring 2002
Dr. J. Yu, Lecture #14




Example 2.12

A stone was thrown straight upward at t=0 with +20.0m/s initial velocity on the roof
of a 50.0m high building,
Find the time the stone reaches at maximum height (v=0) 0=-9.80m/s?
Find the maximum height
Find the time the stone reaches its original height
Find the velocity of the stone when it reaches its original height
5. Find the velocity and position of the stone at t=5.00s

> e

ﬂ‘vf — Vs - at = +20.0- 9.80t = 0.00

t= @ =2.04s
9.80

2 “yf =y +Vyit+%ayt2

=50.0+20° 2.04+%' (-9.80)" (2.04)°

3|lt=2.04" 2=4.08s =50.0+ 20.4 = 70.4(m)

4 |[we =wi +at = 20.0+ (- 9.80)" 4.08=- 20.0(m/ s)

Vyt = Vyi + ayt 1, .
; yi = Yi+ vyt + = ayt -
fmlocity = 20.0+ (- 9.80) " 5.00 T 2-POSI
= -29.0(m/s) =50.0+20.0" 5.00 + =" (- 9.80)’ (5.00)% = +27 .5(m)
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Example 4.5

« A stone was thrown upward from the top of a building at an angle of 30° to
horizontal with initial speed of 20.0m/s. If the height of the building is 45.0m,

how long is it before the stone hits the ground?

V, = v,cos g, = 20 .0 cos 30 ° =17 .3m /s
Vy =v,sn g; =20 .0" sn 30 ° =10 .0m /s
y( = -4 .0 = v,t- ;—gt2
g °- 20 .0t- 90 .0 = 9.80 t*- 20 .0t- 9 .0 = O
20 0+ /(- 20 ))- 4" 9.8 ~ (-9 )
2" 9.80
t = -2.18 sor t =4.22 s
N t = 4.22 s
« What is the speed of the stone just before it hits the ground?
Ve =V, =Vv,cos q, =20 .0" cos 30 ° =17 .3m /s
Vi =V, - gt =v,sn ;- g =10.0-9.80 " 4.22 = -31 .4m /s
V= vy +v,® =17 .32+ (- 3L .4) =35 .9m /s
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Relative Velocity and Acceleration

The velocity and acceleration in two different frames of
references can be denoted:

- r'=r- vt
& Frame S 4 Frame S’ Galilean N N
Vo transformation |dr’_dr =
[ . = -V
_ equation dt  dt
‘,,L’ ERVERY)
O vt O What does this tell you?
F' = F - \7; t <IE§: The accelerations measured in two frames are the
- — — same when the frames move at a constant velocity
dv' _dv dy, with respect to each other!!!
at dt dt ) — — :
— = . The earth’s gravitational acceleration is the same in
a'= a,when v, is constant a frame moving at a constant velocity wrt the earth.
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Example 4.9

A boat heading due north with a speed 10.0km/h Is crossing the river whose
stream has a uniform speed of 5.00km/h due east. Determine the velocity of
the boat seen by the observer on the bank.

—_—

N Vegg = Vgr TV,
- - 2 —2 5 >
Vas | = +[Ver| + Vel =+/@0.0) + (5.00)* =11 .2km /h
Y . T 0
R " Vgr =10.0 jand v, = 5.00 i

—_—

Y v
Vgg = 5.001+10.0 |

Ver| /' VeB g = tan '1§/—BBX T = tan '18@—'00 2= 26.6°
> E Vesy g el0.0g
How long would it take for | [Ves€0SQ - t=3.0km
the boat to cross the river if | Jr=—30 -39 (3005 =18min
the width is 3.0km? Vo C0Sq_ 11.2” coS(26.6')
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1st Law:
Law of Inertia

2nd [ aw:
Law of Forces

AF -ms

Newton's Laws

In the absence of external forces, an object at rest
remains at rest and an object in motion continues
In motion with a constant velocity.

The acceleration of an object Is directly proportional to
the net force exerted on it and inversely proportional to
the object’s mass.

3d Law:
Law of Action
and Reaction

If two objects interact, the force, F,,, exerted on object 1
by object 2 Is equal magnitude to and opposite direction
to the force, F,,, exerted on object 1 by object 2.

Mar. 11, 2002
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Example 5.12

Suppose a block is placed on a rough surface inclined relative to the horizontal. The
Inclination angle Is increased till the block starts to move. Show that by measuring
this critical angle, g, one can determine coefficient of static friction, m.

y

n
Free-body fsfm(n F=Ma

. - X
Diagram
UB\F: -Mg

F
F,=Ma,=n+F =0; n=-F  =Mgcosq,
F.=F,- =0, f,=mn=Mgsnq,
Mgsing, _ Mgsing, - tang,

n Mg cosq,

Mar. 11, 2002 1443-501 Spring 2002
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Example 6.8

A ball of mass m is attached to the end of a cord of length R. The ball is moving in a

vertical circle. Determine the tension of the cord at any instant when the speed of
the ball is v and the cord makes an angle g with vertical.

What are the forces involved in this motion?

m The gravitational force F and the
T radial force, T, providing tension.
RO[™ |4 Fr=ma, =mg sing
a, = gsnq
o V2
a F, =T- mg cosq :mar:mﬁ

2

T = m§8\%+ g cos ¢

Q-0

At what angles the tension becomes maximum and minimum. What are the tension?

Mar. 11, 2002 1443-501 Spring 2002 12
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Example 6.11

A small ball of mass 2.00g is released from rest in a large vessel filled with oll,
where it experiences a resistive force proportional to its speed. The ball reaches a
terminal speed of 5.00 cm/s. Determine the time constant t and the time it takes the
ball to reach 90% of its terminal speed.

Determine the
time constant t.

V
my

Determine the time It takes
the ball to reach 90% of its
terminal speed.

Mar. 11, 2002

Vt:@
b
. -3 2
\ b:mg _200 10,kg_>?.80m/s = 0.302kg /s
v, 5.00° 10 °m/s
. -3
( =M_200 107Kg _5 449035
b 0.392kg /s
_M @ o H0-y@. X0
V= EretgEvid-e o
—v@-e A0
0.9v, vtgi et s
@ e'%g: 0.9; e/ =01
t=-t ¥n0.1=2.30t =2.30>5.10 " 10" ° =11.7(ms)
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Work and Kinetic Energy

Work In physics Is done only when a sum of forces
exerted on an object made a motion to the object.

What does this mean? However much tired your arms feel, if you were
just holding an object without moving it you have

not done any physical work.

Mathematically, work is written in scalar product W= é E. »d =Fdcos

of force vector and the displacement vector

Kinetic Energy is the energy associated with motion and K = %m\/ 211 N.m=Joule
capacity to perform work. Work requires change of energy =
after the completion € Work-Kinetic energy theorem aW=K; - K =DK

Power is the rate of which work is performed. ||p - dW _= d (g): E

dt dt

Units of these quantities????
| ‘ Nm/s=Joule/s=Watt |
Mar. 11, 2002 1443-501 Spring 2002 4
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Example 7.14

A compact car has a mass of 800kg, and its efficiency is rated at 18%. Find the amount of
gasoline used to accelerate the car from rest to 27m/s (~60mi/h). Use the fact that the
energy equivalent of 1gal of gasoline is 1.3x108J.

First let's compute what the kinetic energy needed K, = 1 V2 = 1. 800" (27) =2.9" 10°J
to accelerate the car from rest to a speed v. 2

Since the engine is only 18% efficient we must

d|\(|dp the_necessary Igneﬂc energy with this W, =t = 1 2 = 2.9°10°J _ 16" 10°J
efficiency in order to figure out what the total e 2e 0.18
energy needed is.

Then using the fact that 1gal of gasoline can putout 1.3x108J, we can compute the

total volume of gasoline needed to accelerate the car to 60 mi/h.

W 16" 10°J
Vs =75 =— =0.012gal
1.3°10°J/gal 1.3 10°J/gal
Mar. 11, 2002 1443-501 Spring 2002 15
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Potential Energy

Energy associated with a system of objects =»
Stored energy which has Potential or possibility

to work or to convert to kinetic energy

In order to describe potential energy, U,

What does this mean? .
a system must be defined.

The concept of potential energy can only be used under the special class of forces called,
conservative forces which results in principle of conservation of mechanical energy.

What other forms of energies in the universe?

Mechanical Energy | | Chemical Energy Biological Energy
Electromagnetic Energy Nuclear Energy
Mar. 11, 2002 1443-501 Spring 2002 16
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Gravitational Potential

Potential energy given to an object by gravitational field
In the system of Earth due to its height from the surface

When an object is falling, gravitational force, Mg, performs work on the
object, increasing its kinetic energy. The potential energy of an object at a
height y which is the potential to work is expressed as

.

U, =Fory=mal jpol §)=may| [U,° may
Work performed on the object V\/g =U. - U,
by the gravitational force as the

Vs brick goes from y. to y; Is: = Mgy - mgy; =- [ng

h‘; What does Work by the gravitational force as the brick
this mean? goes from y: to y; is negative of the change in

the system’s potential energy

Mar. 11, 2002 1443-501 Spring 2002 17
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Example 8.1

A bowler drops bowling ball of mass 7kg on his toe. Choosing floor level as y=0, estimate the
total work done on the ball by the gravitational force as the ball falls.

E Let's assume the top of the toe is 0.03m from the floor and the hand
(/){;‘/y\ was 0.5m above the floor.
5);‘;{;\4 Ui:mgy i:7,9'8,0'5:34'3‘]
®é§\\\\ U, =mgy ,=7  9.8° 0.03 =2.06
=) DU =-(QU ,-U,)=32.24J @30 J

b) Perform the same calculation using the top of the bowler’s head as the origin.

What has to change? First we must re-compute the positions of ball at the hand and of the toe.

Assuming the bowler’s height is 1.8m, the ball’s original position is —1.3m, and the toe is at -1.77m.

U . =mgy =7 9.8 (-1.3)=-89.2J
U,=mgy , =7 9.8 (-1.77)=-121 .47
DU =-(U,-U,)=32.2] @30J

Mar. 11, 2002 1443-501 Spring 2002 18
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Elastic Potential Energy

Potential energy given to an object by a spring or an object with elasticity
In the system consists of the object and the spring without friction.

The force spring exerts on an object when it is E = - kx

distorted from its equilibrium by a distance X is s

Th_e work performed_on the W, = 1 o2 - 1 o2

object by the spring is 2 2

: : - o 1, >

The potential energy of this system Is U, ® Skx
What do you see from The work done on the object by the spring
the ab tions? depends only on the initial and final

¢ dbOve cquations: position of the distorted spring.

Where else did you see this trend? || The gravitational potential energy, U,

Mar. 11, 2002 1443-501 Spring 2002 19
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Conservative and Non-conservative Forces

The work done on an object by the gravitational
force does not depend on the object’s path.

When directly falls, the work done on the object is Wg = mgh

| When sliding down the hill  [|Wy = Fy ingine | = Mg sing " |

mg g of length I, the work is =mg(l sing)= mgh
How about if we lengthen the incline by a Still the same V\Frngﬂ
factor of 2, keeping the height the same?? amount of work©

So the work done by the gravitational force on an object is independent on the path of
the object’s movements. It only depends on the difference of the object’s initial and
final position in the direction of the force.

e forc_:es like gravitational 1. If the work performed by the force does not depend on the path
or elastic forces are called ) [ S s oath s
conservative forces : the work performed on a closed path is 0.

Mar. 11, 2002 1443-501 Spring 2002 20
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Conservation of Mechanical Energy

Total mechanical energy is the sum of kinetic and potential energies ||E ° K +U

Ah g
i

hy

Let’s consider a brick What is its potential energy?

of mass m at a height
h from the ground

U, =mgh

What happens to the energy as
the brick falls to the ground?

DU=U,-U, :-C‘SFde

The brick gains speed By how much? v =gt

So what? || The brick’s kinetic energy increased | |K = =nmwv? = %mg %t

The lost potential energy is converted to kinetic energy

What does
this mean?

Mar. 11, 2002

The total mechanical energy of a system remains

constant in any isolated system of objects that E =5
Interacts only through conservative forces: K +éU_ =K, +é_Uf
|

Principle of mechanical energy conservation

21
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Example 8.3

A ball of mass m is attached to a light cord of length L, making up a pendulum. The ball is

released from rest when the cord makes an angle g, with the vertical, and the pivoting point
P is frictionless. Find the speed of the ball when it is at the lowest point, B.

Compute the poten_tial energy h=L- Lcosq,
at the maximum height, h. U = 1 (1 )
Remember where the 0 is.  ~ Mgt \1- €054,
K. +U, =K,k +U,
Using th_e principle of mgh = mgL (- cos q,)= 1.2
mechanical energy 2
conservation vi=12gL (L- cos g,)
N v=+29g (@- cos q,)
b) Determine tension T at the point B.
V2
Recall the centripetal [|F, =ma, =T - mg = mT — -
c 0SS CnecC e resuitin
a_Cceleratlon_ of a ® V20 = L(l- COS )6 a simple situation. What
circular motion T=mgg+—==mcg + 9 9a = happens when the initial
g Lg € L g| |angleq,is0? T =mg

Mar. 11, 2002
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Linear Momentum
The principle of energy conservation can be used to solve
problems that are harder to solve just using Newton’s laws. It is
used to describe motion of an object or a system of objects.

A new concept of linear momentum can also be used to solve physical
problems, especially the problems involving collisions of objects.

Linear momentum of an object whose massism |[— 0 7
and is moving at a velocity v is defined as P~ mv
What can you tell from this 1. Momentum is a vector quantity.

definition about momentum?

2
3.
4

The heavier the object the higher the momentum
The higher the velocity the higher the momentum
Its unit is kg.m/s

What else can use see from the
definition? Do you see force?

Mar. 11, 2002
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Linear Mome

—

F = ddtp i ccllt )

ntum and Forces

What can we learn from this
Force-momentum relationship?

= The rate of the change of particle’s momentum is the same as the
net force exerted on it.

e  When net force is 0, the particle’s linear momentum is constant.

« [fanparticle is isolated, the particle experiences no net force,
therefore its momentum does not change and is conserved.

Something else we can do

with this relationship. What

do you think it is?

function of time.

The relationship can be used to study
the case where the mass changes as a

Can you think of a
few cases like this?

Motion of a meteorite

Trajectory a satellite

Mar. 11, 2002

1443-501 Spring 2002
Dr. J. Yu, Lecture #14

24




Conservation of Linear Momentum in a Two
Particle System

Consider a system with two particles that does not have any external
forces exerted on it. What is the impact of Newton’s 3" Law?

If particle#1 exerts force on particle #2, there must be another force that
the particle #2 exerts on #1 as the reaction force. Both the forces are
Internal forces and the net force in the SYSTEM is still 0.

Now how would the momenta Let say that the particle #1 has momentum

of these particles look like? p, and #2 has p, at some point of time.
Using momentum- _. dp. B d o,
force relationship Fa=— L and Fp = —2

And since net force
of this system is 0

dp2+dpl d (— —»)

S F Ft ,
arTretras et T TR

Therefore E + E = const | The total linear momentum of the system is conserved!!!

Mar. 11, 2002 1443-501 Spring 2002 25
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Example 9.5

A car of mass 1800kg stopped at a traffic light is rear-ended by a 900kg car, and
the two become entangled. If the lighter car was moving at 20.0m/s before the
collision what is the velocity of the entangled cars after the collision?

Before collision The momenta before and after the collision are

: m — - - -
» %@ P; = MV +M,Vai =M, Voi
@ 0.0m/s _ . . .
1 P =myvir +myvzr = (m +m, v,

Since momentum of the system must be conserved

After collision

Pi = Py

(m1+m2)\7f = mz\_;Zi

V. = m, V2 _ 900 20 .01 6 67im/s
(m,+m,) 900 + 1800

What can we learn from these equations  The cars are moving in the same direction as the lighter

on the direction and magnitude of the car's original direction to conserve momentum.
velocity before and after the collision? The magnitude is inversely proportional to its own mass.
Mar. 11, 2002 1443-501 Spring 2002 26
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Elastic and Inelastic Collisions

Momentum is conserved in any collisions as long as external forces negligible.

Collisions are classified as elastic or inelastic by the conservation of kinetic
energy before and after the collisions.

EIaS_ti_C A collision in which the total kinetic energy is the same
Collision before and after the collision.

Inelf:lS_tiC A collision in which the total kinetic energy is not the same
Collision before and after the collision.

Two types of inelastic collisions:Perfectly inelastic and inelastic

Perfectly Inelastic: Two objects stick together after the

collision moving at a certain velocity together.
Inelastic: Colliding objects do not stick together after the collision

but some Kinetic energy is lost.

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.

Mar. 11, 2002 1443-501 Spring 2002 27
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Elastic and Perfectly Inelastic Collisions

In perfectly Inelastic c_o.IIisions, t.he objects stick leTa + sz—zi =(m, + mz)\Tf
together after the collision, moving together. .

Momentum is conserved in this collision, so the \Tf’ _my; TV,

final velocity of the stuck system is (m +m,)

How about elastic collisions?

In elastic collisions, both the
momentum and the kinetic energy
are conserved. Therefore, the final
speeds in an elastic collision can
be obtained in terms of initial
speeds as

mVvy, + MV, =MV MV,
i -, 1 -, 1 ., 1 5
Erqvli +§sz2i _Erqvlf +§sz2f

2 2

rnl(vli - Vi ): mz(szi - V22f)

rnl(vli - Vi )(Vli * Vi ): mz(Vzi - Vg )(V2i +V2f)

From1-dim momentum conservation:
WH(VJJ - Vlf) mz(V2| sz)

aeml &2 & 2m 0 Lam - m, 0
- g _Vll g _V2|
m +m, g m, +m, g
Mar. 11, 2002 1445 001 Spring 2002 28
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Example 9.9

Proton #1 with a speed 3.50x10° m/s collides elastically with proton #2 initially at
rest. After the collision, proton #1 moves at an angle of 37° to the horizontal axis
and proton #2 deflects at an angle f to the same axis. Find the final speeds of the

two protons and the scattering angle of proton #2, f .

M, Vi Since both the particles are protons m;=m,=m..
(m,) Using momentum conservation, one obtains
N m v, =m v, cosq + m_ Vv, cosf
/,@/\vq m,v,, sng - mv,,sinf =0
<‘\j f Canceling m; and put in all known quantities, one obtains

% v, cos37° +v,, cosf =3.50" 10° (1)

V; SIN37° =v,, sinf (2

From kinetic energy

conservation: Soning Eqs. 1.2 V.. - 28  10°m/s
650 10°F =i+, @) eguvallzgnsqf).ne gets [z DA oomls
’ f =53.0°
Mar. 11, 2002 1443-501 Spring 2002 29
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Center of Mass of a Rigid Object

The formula for CM can be expanded to Rigid Object or a
system of many particles

(o)
m: V. m: Z
M, X, + M, X, + X M, X a mx a my a mz
XCM - = IO yCM - [o] ’ ZCM — Io
I'nl+m2+><><><+mn a.ml a.ml a.ml
i i i
The position vector of the | |7 = Xou ¥ You J* Za ko
center of mass of a many a mxil+ta my;j+a mzk g mr;
particle system is B 3 m ~ M
. . . 3 D _
A rigid body — an object with shape « oy a mi %
and size with mass spread throughout - M
the body, ordinary objects — can be 34 Dm, x,
considered as a group of particles with | |x., = lim — = OXxdm
mass m. densely spread throughout A
the given shape of the object - 1 .-
Fem = —— OI’ dm
Mar. 11, 2002 1443-501 Spring 2002 M 30

Dr. J. Yu, Lecture #14




Example 9.13

Show that the center of mass of a rod of mass M and length L lies in midway
between its ends, assuming the rod has a uniform mass per unit length.
A L The formula for CM of a continuous object Is
< _ 1 x=L g
XCM —_ VQZO xXam
< » d:\ Since the density of the rod is constant, one can write
dm= dx l[dm =1 dx; where | =M /L
7 W X=IL . .
Therefore |[x.,, = 1 (‘5‘L| wix = = €1, U _ igell 129- iéael v 8= L&
M %= M8 H, M& g ME& g 2

Find the CM when the density of the rod non-uniform but varies linearly as a function of x, | =a x

= A gk = & B R BN SN U )
M = Q., | dx = Q., axdx Xeu _VQ=0 | xdx —Von axdx —Vggax HX=O
z X=L
=Sacl =lae | |iig o 1@y 0.2
g2 H., 2 eSS
Mar. 11, 2002 —————Eepr—Tvn .
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Motion of a Group of Particles

We've learned that the CM of a system can represent the motion of a system.
Therefore, for an isolated system of many particles in which the total mass M is

preserved, the velocity, total momentum, acceleration of the system are

— o -
. = drem d el o -0 1o dri a mVi
Velocity of the system | |Vem = = mrit=—g m =
J ) MT T dem dMT T A M M
Total Momentum - - é mi\7. o - o —
of the system P =MVew =M =o—=a mvi=a p
Acceleration of o dvev d 2l o o0 1 3 m dvi am a
M = = i Vi+=— =
the system T Td  deM Ty MY T M
External force exerting | o = _ = _o = dp,, || What about the
on the system A Mg T Mam =g mai = ot internal forces?
it net external force is 0 | |8 F_ =0=9Pw. 5 = cong | [ SYStEM'S momentum
= t IS conserved.

Mar. 11, 2002
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Angular Displacement, Velocity, and Acceleration

Using what we have learned in the previous slide, how Dq =q. - g,
would you define the angular displacement? f :

— q - q
How about the average angular speed? wo L= b Js
t, -t Dt
_ o1:.Dg _do
And the instantaneous angular speed? W | M —
peo Dt dt
By the same token, the average angular | |5 o Wi = Wi _ Dw
acceleration t, -t Dt
And the instantaneous angular q © | Dw dW
acceleration? [!Kgo] ot

When rotating about a fixed axis, every particle on a rigid object rotates through

the same angle and has the same angular speed and angular acceleration.
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Rotational Kinematics

The first type of motion we have learned in linear kinematics was
under a constant acceleration. We will learn about the rotational
motion under constant acceleration, because these are the simplest

motions in both cases.

Just like the case In linear motion, one can obtain

Angular Speed under constant
angular acceleration:

Angular displacement under
constant angular acceleration:

One can also obtain

W, =w. +at

d; =q; tw;t +%at2

sz :Wi2+2a(qf - (;

)
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Example 10.1

A wheel rotates with a constant angular acceleration pf 3.50 rad/s?. If
the angular speed of the wheel is 2.00 rad/s at t,=0, a) through what

angle does the wheel rotate in 2.00s?

Using the angular displacement

q¢ - di =wt+%at2

formula in the previous slide, one gets  |= 2.00 - 2.00 + %3_50 " (2.0
=11.0rad = grev .=1.75rev.
2p
What is the angular speed at t=2.00s? [[w; =w; +at
. =2.00+3.50" 2.00
Using the angular speed and Iy
acceleration relationship wrrz—s

Find the angle through which the wheel
rotates between t=2.00 s and t=3.00 s.

Mar. 11, 2002 1443-501 Spring 2

g, =2.00" 3.00 + %3.50’ (3.00 ) = 21 .8rad

Dg =q,- q, =10.8rad :Ere\/.:l.nre\/.

2p
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Rotational Energy

What do you think the kinetic energy of a rigid object
that is undergoing a circular motion is?

Kinetic energy of a masslet, m;,
moving at a tangential speed, v;, Is

1, 1 ,
K. ==mv’ ==mr°w
| Zm | Zm |

Since a rigid body is a collection of masslets, - _lag 5,0
= K == mrw’ ==¢cgq mr’w’
the total kinetic energy of the rigid object is Ke al‘ K 2? I zg"?l i -

By defining a new quantity called, | = é mnz The above expression
Moment of Inertia, I, as i IS simplified as

L
K=o W

What are the dimension and unit of Moment of Inertia? kgxrf “\/I EJ

What do you think the Measure of resistance of an object to
moment of inertia is? changes in its rotational motion.

What similarity do you see between  Mass and speed in linear kinetic energy are
rotational and linear kinetic energies? replaced by moment of inertia and angular speed.
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Example 10.4

In a system consists of four small spheres as shown in the figure, assuming the radii are
negligible and the rods connecting the particles are massless, compute the moment of
Inertia and the rotational kinetic energy when the system rotates about the y-axis at w.

y . e .
), Since the rotation is about y axis, the moment of
Inertia about y axis, 1,, is
b y
Q- | | O | =8 mr2=MI2+MI2+mx0%+m>0? = 2M| 2
O b X i
Why are some 0s? This Is because the rotation is done about y axis,
M) y " and the radii of the spheres are negligible.

1 1
Thus, the rotational kinetic energy is  |Kg = 5 lw? = E(ZMI 2)NZ = MI*w*

Find the moment of inertia and rotational kinetic energy when the system rotates on
the x-y plane about the z-axis that goes through the origin O.

=8 =M M mo? =21 ) = w2 =2 oM+ 2t = (Wi + e
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Calculation of Moments of Inertia

Moments of inertia for large objects can be computed, if we assume

the object consists of small volume elements with mass, Dm..
: : _ : T Q 2 — N2
The moment of inertia for the large rigid object | = lim & £"Dm =g “dm
[
It Is sometimes easier to compute moments of inertia in terms of volume of the elements
rather than their mass

Using the volume density, r, replace . _dm . _ The moments of — N2
dm in the above equation with dV. =Ty Inertia becomes | Crr av

Example 10.5: Find the moment of inertia of a uniform hoop of mass M and radius R
about an axis perpendicular to the plane of the hoop and passing through its center.

&y The moment | = ¢r?dm=R?¢dm= MR’
of inertia IS

The moment of inertia for this
object is the same as that of a
point of mass M at the distance R.

X What do you notice
from this result?
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Example 10.6

Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an
axis perpendicular to the rod and passing through its center of mass.

M
y The line density of the rod is =T
so the masslet is dm=| dx:%dx
- M M &l u'°
W Th? mc_)m_ent | = A 2dm = 6_/2 dez_ix3g
r of inertia is WL L& H.,
_M&g elold_Ma0 ML
3L E20 & 254 BLE45 12
2 z L
What is the moment of inertia | = ¢y*dm = 5> LM dx = '\c % x3§
when the rotational axis is at y y L2 °
) = —|(L ¥ = |_3 =
one end of the rod A (L) 3|_( ) 3

Will this be the same as the above. Since the moment of inertia is resistance to motion, it makes perfect sense

Why or why not?

for it to be harder to move when it is rotating about the axis at one end.
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Parallel Axis Theorem

Moments of inertia for highly symmetric object is relatively easy if the
rotational axis is the same as the axis of symmetry. However if the axis of
rotation does not coincide with axis of symmetry, the calculation can still be

done in simple manner using parallel-axis theorem. | =1, +MD’
y
A Moment of inertia is defined 1 =¢r*dm= C\NXZ +y2)dm (1)
(xy)  Sincexandyare X=Xy, +X; Y=VYeut+Y
24 One can substitute x and y in Eq. 1 to obtain
> _ 2 2
- | _CKXCM +X‘) +(yCM +yl) Jdm
3 e - o . 2yl
EA N 5 )éM +y(23M Cdm+2>Q:|v| C\dem+2yCM Cy'dm'i'e(xl +y“am
- > o jx'dm = 0
y  Since the X and y" are the ox am =
le Xom . g distance from CM, by definition cy'dm =0
X Therefore, the parallel-axis theorem | =1y +MD?
What does this Moment of inertia of any object about any arbitrary axis are the same as
theorem tell you? the sum of moment of inertia for a rotation about the CM and that of the

CM about the rotation axis.



Example 10.8

Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an
axis that goes through one end of the rod, using parallel-axis theorem.

y The line density of the rod is | :MT
so the masslet is dm=| dx:%dx
cm  OX 5 , L/2
w The moment of | = & 2dm = (\)“2 XM o =Mel sl
< r inertia about Wz L L& H
the CM M %_ .3 - .3 \ ) 5

Using the parallel axis theorem | =1, +D°M =

¢ : +
12 e2g 12 4

The result is the same as using the definition of moment of inertia.

Parallel-axis theorem is useful to compute moment of inertia of a rotation of a

rigid object with complicated shape about an arbitrary axis
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Torque

Torque is the tendency of a force to rotate an object about some axis.
Torque, t, Is a vector guantity.

Consider an object pivoting about the point P
by the force F being exerted at a distance r.

Lineof  The line that extends out of the tail of the force
Action  yector is called the line of action.

d T 3 The perpendicular distance from the pivoting point

Moment P to the line of action is called Moment arm.
arm

Magnitude of torque Is defined as the product of the force
exerted on the object to rotate it and the moment arm.

t °rFsinf =Fd

o
When there are more than one force being exerted on certain a t =t . +1 5
points of the object, one can sum up the torque generated by each

force vectorially. The convention for sign of the torque is positive if = Fd - F2d2

rotation is in counter-clockwise and negative if clockwise.
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Torque & Angular Acceleration

F, Let's consider a point object with mass m rotating in a circle.

77 D U What forces do you see in this motion?
[
\ . .
.l i ) The tangential force F, and radial force F,
\\\ p The tangential force F is F =ma =nmra
7

The torque due to tangential force F,is ~ t =Fr =mar =nr‘a

What do you see from the above relationship? t =la

What does this mean? Torque acting on a particle is proportional to the angular acceleration.

What law do you see from this relationship? ~ Analogs to Newton's 2" law of motion in rotation.

How aboutarigid object?  The external tangential force dF, is dF, = dma, = dmra

dF
dm  Thetorque due to tangential force Fiis  dt =dRr = (rzdm)a
r The total torqueis gt =a¢r’dm=la
What is the contribution due Contribution from radial force is 0, because its
@) dial f d whv? line of action passes through the pivoting
Mar. 11, 2002 to radial force and w y: 2  point, making the moment arm 0.
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