
1443-501 Spring 2002
Lecture #14
Dr. Jaehoon Yu

1. Work, Power, & Energy of Rotational Motions 
2. Review examples of Chapters 1 - 10

Mid-term exam 5:30-6:50pm, this Wednesday, Mar. 13, in the classroom.
Bring your own blue books for additional answer sheets.
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Example 10.10
A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is 
free to rotate about the pivot in the vertical plane.  The rod is released from rest in the 
horizontal position what is the initial angular acceleration of the rod and the initial linear 
acceleration of its right end?

The only force generating torque is the gravitational force Mg
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Using the relationship between tangential and 
angular acceleration
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What does this mean?

The tip of the rod falls faster than 
an object undergoing a free fall.
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Work, Power, and Energy in Rotation
Let’s consider a motion of a rigid body with a single external 
force F exerted on the point P, moving the object by ds.
The work done by the force F as the object rotates 
through infinitesimal distance ds=rdθ in a time dt is 

What is Fsinφ? The tangential component of force F.

( ) θφ rdFsdFdW sin=⋅=

Since the magnitude of torque is rFsinφ,

F
φ

O

rdθ
ds

What is the work done by 
radial component Fcosφ?

Zero, because it is perpendicular to the 
displacement.

θτddW =

The rate of work, or power becomes τω
θτ

===
dt
d

dt
dW

P
How was the power 
defined in linear motion?

The rotational work done by an external force 
equals the change in rotational energy. 
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Similarity Between Linear and Rotational Motions
All physical quantities in linear and rotational motions show striking similarity.

Momentum
RotationalKineticKinetic Energy

Power
WorkWorkWork
TorqueForceForce

Acceleration
Speed

Angle     (Radian)DistanceLength of motion

Moment of InertiaMassMass
RotationalLinearSimilar Quantity

∫= dmrI 2

dt
dr

v =
dt

d θ
ω =

dt
dv

a =
dt

d ω
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maF = ατ I=
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x
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2-dim Motion Under Constant Acceleration

• Position vectors in xy plane: jyixr iii += jyixr fff +=

• Velocity vectors in xy plane: jvivv yixii += jvivv yfxff +=

( ) ( ) tavjtavitavv

tavvtavv

iyyixxif

yyiyfxxixf

+=+++=

+=+= ,

• How are the position vectors written in acceleration vectors?

2
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Example 2.12
A stone was thrown straight upward at t=0 with +20.0m/s initial velocity on the roof 

of a 50.0m high building,
1. Find the time the stone reaches at maximum height (v=0)
2. Find the maximum height
3. Find the time the stone reaches its original height
4. Find the velocity of the stone when it reaches its original height
5. Find the velocity and position of the stone at t=5.00s

st

ttavv yyif
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Example 4.5
• A stone was thrown upward from the top of a building at an angle of 30o to 

horizontal with initial speed of 20.0m/s.  If the height of the building is 45.0m, 
how long is it before the stone hits the ground? 

( )
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t
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• What is the speed of the stone just before it hits the ground? 

( ) smvvv
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Relative Velocity and Acceleration
The velocity and acceleration in two different frames of 
references can be denoted:

O

Frame S

r’

O’

Frame S’v0

v0t

r
0

0

0
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'

'

vvv

v
dt

rd
dt

rd

tvrr
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−=

−=Galilean 
transformation 
equation 

constant is  when ,'

'

'

0

0

0

vaa

dt
vd

dt
vd

dt
vd

tvrr

=

−=

−=

What does this tell you?

The accelerations measured in two frames are the 
same when the frames move at a constant velocity 
with respect to each other!!!

The earth’s gravitational acceleration is the same in 
a frame moving at a constant velocity wrt the earth.
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Example 4.9
A boat heading due north with a speed 10.0km/h is crossing the river whose 
stream has a uniform speed of 5.00km/h due east. Determine the velocity of 
the boat seen by the observer on the bank. 
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E
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How long would it take for 
the boat to cross the river if 
the width is 3.0km? ( ) min1830.0
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Newton’s Laws
In the absence of external forces, an object at rest 
remains at rest and an object in motion continues 
in motion with a constant velocity. 

The acceleration of an object is directly proportional to 
the net force exerted on it and inversely proportional to 
the object’s mass. 

amF
i

i =∑

If two objects interact, the force, F12, exerted on object 1 
by object 2 is equal magnitude to and opposite direction 
to the force, F21, exerted on object 1 by object 2. 

1221 FF −=

1st Law: 
Law of Inertia

2nd Law: 
Law of Forces

3rd Law: 
Law of Action 
and Reaction
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Example 5.12
Suppose a block is placed on a rough surface inclined relative to the horizontal.  The 
inclination angle is increased till the block starts to move.  Show that by measuring 
this critical angle, θc, one can determine coefficient of static friction, µs.

c
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µ
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Example 6.8
A ball of mass m is attached to the end of a cord of length R.  The ball is moving in a 
vertical circle.   Determine the tension of the cord at any instant when the speed of 
the ball is v and the cord makes an angle θ with vertical. 

What are the forces involved in this motion?


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



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∑

∑
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2

2

g
R
v

mT

R
v

mmamgTF

ga

mgmaF

rr

t

tt

The gravitational force Fg and the 
radial force, T, providing tension. T

m

θ
R Fg=mg

At what angles the tension becomes maximum and minimum.  What are the tension?
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Example 6.11
A small ball of mass 2.00g is released from rest in a large vessel filled with oil, 
where it experiences a resistive force proportional to its speed.  The ball reaches a 
terminal speed of 5.00 cm/s.  Determine the time constant τ and the time it takes the 
ball to reach 90% of its terminal speed. 

m
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Determine the 
time constant τ. 

Determine the time it takes 
the ball to reach 90% of its 
terminal speed. 
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Work and Kinetic Energy
Work in physics is done only when a sum of  forces 
exerted on an object made a motion to the object.
What does this mean? However much tired your arms feel, if you were 

just holding an object without moving it you have 
not done any physical work.

Mathematically, work is written in scalar product 
of force vector and the displacement vector 

Kinetic Energy is the energy associated with motion and 
capacity to perform work.   Work requires change of energy 
after the completionçWork-Kinetic energy theorem

Units of these quantities????

Power is the rate of which work is performed.

θcosFddFW i∑ =⋅=

2

2
1

mvK =

( ) vFs
dt
d

F
dt

dW
P ⋅=⋅==

KKKW if ∆=−=∑

N.m=Joule

Nm/s=Joule/s=Watt
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Example 7.14
A compact car has a mass of 800kg, and its efficiency is rated at 18%.  Find the amount of 
gasoline used to accelerate the car from rest to 27m/s (~60mi/h).  Use the fact that the 
energy equivalent of 1gal of gasoline is 1.3x108J.

( ) JmvK f
522 109.227800

2
1

2
1

×=××==

Then using the fact that 1gal of gasoline can putout 1.3x108J, we can compute the 
total volume of gasoline needed to accelerate the car to 60 mi/h.

First let’s compute what the kinetic energy needed 
to accelerate the car from rest to a speed v.

Since the engine is only 18% efficient we must 
divide the necessary kinetic energy with this 
efficiency in order to figure out what the total 
energy needed is.

J
J

mv
K

W f
E

5
5

2 1016
18.0
109.2

2
1

×=
×

===
εε

gal
galJ

J
galJ

W
V E

gas 012.0
/103.1

1016
/103.1 8

5
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×

×
=

×
=
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Potential Energy
Energy associated with a system of objects è
Stored energy which has Potential or possibility 
to work or to convert to kinetic energy

What does this mean? In order to describe potential energy, U,
a system must be defined.

What other forms of energies in the universe?

The concept of potential energy can only be used under the special class of forces called, 
conservative forces which results in principle of conservation of mechanical energy.

Mechanical Energy Biological Energy

Electromagnetic Energy Nuclear Energy

Chemical Energy
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Gravitational Potential

When an object is falling, gravitational force, Mg, performs work on the 
object, increasing its kinetic energy.  The potential energy of an object at a 
height y which is the potential to work is expressed as

Potential energy given to an object by gravitational field 
in the system of Earth due to its height from the surface

m

yf

m
mgyi ( ) ( ) mgyjyjmgyFU gg =−⋅−=⋅=

What does 
this mean?

gfi

fig

Umgymgy

UUW

∆−=−=

−=Work performed on the object 
by the gravitational force as the 
brick goes from yi to yf is:

Work by the gravitational force as the brick 
goes from yi to yf is negative of the change in 
the system’s potential energy

mgyU g ≡
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Example 8.1
A bowler drops bowling ball of mass 7kg on his toe.  Choosing floor level as y=0, estimate the 
total work done on the ball by the gravitational force as the ball falls.   

( ) JJUUU

JmgyU

JmgyU

if

ff

ii

3024.32

06.203.08.97

3.345.08.97

≅=−−=∆

=××==
=××==

b) Perform the same calculation using the top of the bowler’s head as the origin.

Assuming the bowler’s height is 1.8m, the ball’s original position is –1.3m, and the toe is at –1.77m.

M

Let’s assume the top of the toe is 0.03m from the floor and the hand 
was 0.5m above the floor.

What has to change?

( )
( )

( ) JJUUU

JmgyU

JmgyU

if

ff

ii

302.32

4.12177.18.97

2.893.18.97

≅=−−=∆

−=−××==
−=−××==

First we must re-compute the positions of ball at the hand and of the toe. 
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Elastic Potential Energy

The force spring exerts on an object when it is 
distorted from its equilibrium by a distance x is

Potential energy given to an object by a spring or an object with elasticity 
in the system consists of the object and the spring without friction.

kxFs −=

What do you see from 
the above equations?

22

2
1

2
1

fis kxkxW −=The work performed on the 
object by the spring is

The work done on the object by the spring 
depends only on the initial and final 
position of the distorted spring.

Where else did you see this trend?

The potential energy of this system is 2

2
1

kxU s ≡

The gravitational potential energy, Ug
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Conservative and Non-conservative Forces

When directly falls, the work done on the object is

The work done on an object by the gravitational 
force does not depend on the object’s path.

mghWg =

How about if we lengthen the incline by a 
factor of 2, keeping the height the same??

( ) mghlmg

lmglFW inclinegg

==

×=×= −

θ

θ

sin

sin

Still the same 
amount of work☺

The forces like gravitational 
or elastic forces are called 
conservative forces

So the work done by the gravitational force on an object is independent on the path of 
the object’s movements.  It only depends on the difference of the object’s initial and 
final position in the direction of the force.

mghWg =

1. If the work performed by the force does not depend on the path
2. If the work performed on a closed path is 0.

h l

m

θmg
When sliding down the hill 
of length l, the work is
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Conservation of Mechanical Energy
Total mechanical energy is the sum of kinetic and potential energies

mghU g =

Let’s consider a brick 
of mass m at a height 
h from the ground

∫−=−=∆ f

i

x

x xif dxFUUU

The brick gains speed gtv =

The lost potential energy is converted to kinetic energy

What does 
this mean?

The total mechanical energy of a system remains 
constant in any isolated system of objects that 
interacts only through conservative forces: 
Principle of mechanical energy conservation

m
mgh

What is its potential energy?

What happens to the energy as 
the brick falls to the ground?m

h1

By how much?

So what? The brick’s kinetic energy increased 222

2
1

2
1

tmgmvK ==

And?

UKE +≡

∑∑ +=+

=

ffii

fi

UKUK

EE
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Example 8.3
A ball of mass m is attached to a light cord of length L, making up a pendulum. The ball is 
released from rest when the cord makes an angle θA with the vertical, and the pivoting point 
P is frictionless.  Find the speed of the ball when it is at the lowest point, B.

( )Ai

A

mgLU
LLh

θ
θ
cos1

cos
−=

−=

b) Determine tension T at the point B.

Using the principle of 
mechanical energy 
conservation

( )

( )A

A

rr

mgT

L
gL

gm
L
v

gmT

L
v

mmgTmaF

θ

θ

cos23

cos122

2

−=∴







 −

+=







+=

=−==Recall the centripetal 
acceleration of a 
circular motion  

Cross check the result in 
a simple situation. What 
happens when the initial 
angle θA is 0?

( )

( )
( )A

A

A

ffii

gLv

gLv

mvmgLmgh

UKUK

θ

θ

θ

cos12

cos12
2
1

cos1

2

2

−=∴

−=

=−=

+=+

Compute the potential energy 
at the maximum height, h.  
Remember where the 0 is.

mgm
m

θA

L

T

B

mgT =

h{
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Linear Momentum
The principle of energy conservation can be used to solve 
problems that are harder to solve just using Newton’s laws.   It is 
used to describe motion of an object or a system of objects.
A new concept of linear momentum can also be used to solve physical 
problems, especially the problems involving collisions of objects.

vmp ≡
Linear momentum of an object whose mass is m 
and is moving at a velocity v is defined as 

1. Momentum is a vector quantity.
2. The heavier the object the higher the momentum
3. The higher the velocity the higher the momentum
4. Its unit is kg.m/s 

What can you tell from this 
definition about momentum?

What else can use see from the 
definition?  Do you see force?

The change of momentum in a given time interval

( )
dt

vd
mvm

dt
d

dt
pd

== Fam ==
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Linear Momentum and Forces
What can we learn from this 
Force-momentum relationship?

Something else we can do 
with this relationship.  What 
do you think it is?

( )vm
dt
d

dt
pd

F ==

The relationship can be used to study 
the case where the mass changes as a 
function of time.

Can you think of a 
few cases like this?

Motion of a meteorite Trajectory a satellite 

• The rate of the change of particle’s momentum is the same as the
net force exerted on it.

• When net force is 0, the particle’s linear momentum is constant.
• If a particle is isolated, the particle experiences no net force, 

therefore its momentum does not change and is conserved.
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Conservation of Linear Momentum in a Two 
Particle System

Consider a system with two particles that does not have any external 
forces exerted on it.    What is the impact of Newton’s 3rd Law?

Now how would the momenta
of these particles look like?

If particle#1 exerts force on particle #2, there must be another force that 
the particle #2 exerts on #1 as the reaction force.   Both the forces are 
internal forces and the net force in the SYSTEM is still 0. 

Let say that the particle #1 has momentum 
p1 and #2 has p2 at some point of time.

Using momentum-
force relationship dt

pd
F

dt
pd

F 2
12

1
21  and  ==

And since net force 
of this system is 0

constpp =+ 12
Therefore

( ) 012
12

2112 =+=+=+=∑ pp
dt
d

dt
pd

dt
pd

FFF

The total linear momentum of the system is conserved!!!
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Example 9.5
A car of mass 1800kg stopped  at a traffic light is rear-ended by a 900kg car, and 
the two become entangled.  If the lighter car was moving at 20.0m/s before the 
collision what is the velocity of the entangled cars after the collision?

( ) ffff

iiii

vmmvmvmp

vmvmvmp

212211

222211

+=+=

=+=

The momenta before and after the collision are

What can we learn from these equations 
on the direction and magnitude of the 
velocity before and after the collision?

m1

20.0m/s

m2

vf
m1

m2

Since momentum of the system must be conserved

( )

( ) smi
i

mm
vm

v

vmvmm

pp

i
f

if

fi

/ 67.6
1800900

0.20900

21

22

2221

=
+
×

=
+

=

=+

=

The cars are moving in the same direction as the lighter 
car’s original direction to conserve momentum. 
The magnitude is inversely proportional to its own mass.

Before collision

After collision
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Elastic and Inelastic Collisions 

Collisions are classified as elastic or inelastic by the conservation of kinetic 
energy before and after the collisions.

A collision in which the total kinetic energy is the same 
before and after the collision.  

Momentum is conserved in any collisions as long as external forces negligible.

Elastic 
Collision

Two types of inelastic collisions:Perfectly inelastic and inelastic  

Perfectly Inelastic: Two objects stick together after the 
collision moving at a certain velocity together.

Inelastic: Colliding objects do not stick together after the collision 
but some kinetic energy is lost.

Inelastic 
Collision

A collision in which the total kinetic energy is not the same 
before and after the collision.  

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.  
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Elastic and Perfectly Inelastic Collisions 
In perfectly Inelastic collisions, the objects stick 
together after the collision, moving together.  
Momentum is conserved in this collision, so the 
final velocity of the stuck system is

How about elastic collisions?
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In elastic collisions, both the 
momentum and the kinetic energy 
are conserved. Therefore, the final 
speeds in an elastic collision can 
be obtained in terms of initial 
speeds as 
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Example 9.9
Proton #1 with a speed 3.50x105 m/s collides elastically with proton #2 initially at 
rest.  After the collision, proton #1 moves at an angle of 37o to the horizontal axis 
and proton #2 deflects at an angle φ to the same axis.  Find the final speeds of the 
two protons and the scattering angle of proton #2, φ.

Since both the particles are protons m1=m2=mp.
Using momentum conservation, one obtainsm2

m1

v1i

m 1

v 1f

θ

m
2

v2f

φ

0sinsin

coscos

21

211

=−

+=

φθ

φθ

fpfp

fpfpip

vmvm

vmvmvm

Canceling mp and put in all known quantities, one obtains

o0.53

/1011.2

/1080.2
5

2

5
1

=

×=

×=

φ

smv

smv

f

f

From kinetic energy 
conservation:

( ) (3)    1050.3 2
2

2
1

25
ff vv +=×

Solving Eqs. 1-3 
equations, one gets

(2)    sin37sin

(1)   1050.3cos37cos

21

5
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φ
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ff

ff

vv
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Center of Mass of a Rigid Object
The formula for CM can be expanded to Rigid Object or a 
system of many particles 

A rigid body – an object with shape 
and size with mass spread throughout 
the body, ordinary objects – can be 
considered as a group of particles with 
mass mi densely spread throughout 
the given shape of the object

∑
∑

=
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The position vector of the 
center of mass of a many 
particle system is M
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Example 9.13

The formula for CM of a continuous object is

∫
=

=
=

Lx

xCM xdm
M

x
0

1

Therefore

L

x dx
dm=λdx

Since the density of the rod is constant, one can write
LMdxdm /   where; == λλ
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Show that the center of mass of a rod of mass M and length L lies in midway 
between its ends, assuming the rod has a uniform mass per unit length.

Find the CM when the density of the rod non-uniform but varies linearly as a function of x, λ=α x
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Motion of a Group of Particles
We’ve learned that the CM of a system can represent the motion of a system.  
Therefore, for an isolated system of many particles in which the total mass M is 
preserved, the velocity, total momentum, acceleration of the system are

Velocity of the system
M

vm

dt
rd

m
M

rm
Mdt

d
dt
rd

v
iii

iii
CM

CM
∑∑∑ ==






==

11

Total Momentum 
of the system ∑∑∑ ==== iii

ii
CMtot pvm

M

vm
MvMp

Acceleration of 
the system M

am

dt
vd

m
M

vm
Mdt

d
dt
vd

a
iii

iii
CM

CM
∑∑∑ ==






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11

External force exerting 
on the system dt

pd
amaMF tot

iiCM
ext

=== ∑∑

If net external force is 0 const    ;0 ===∑ tot
tot

ext
p

dt
pd

F System’s momentum 
is conserved.

What about the 
internal forces?
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Using what we have learned in the previous slide, how 
would you define the angular displacement? if θθθ −=∆
Angular Displacement, Velocity, and Acceleration

How about the average angular speed?
ttt if

if

∆
∆

=
−

−
≡

θθθ
ω

And the instantaneous angular speed?
dt
d

tt

θθ
ω =

∆
∆

≡
→∆

lim
0

By the same token, the average angular 
acceleration ttt if

if

∆
∆

=
−

−
≡

ωωω
α

And the instantaneous angular 
acceleration? dt

d
tt

ωω
α =

∆
∆

≡
→∆

lim
0

When rotating about a fixed axis, every particle on a rigid object rotates through  
the same angle and has the same angular speed and angular acceleration.

θi

θf
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Rotational Kinematics
The first type of motion we have learned in linear kinematics was 
under a constant acceleration.  We will learn about the rotational 
motion under constant acceleration, because these are the simplest 
motions in both cases.

tif αωω +=

Just like the case in linear motion, one can obtain

Angular Speed under constant 
angular acceleration:

Angular displacement under 
constant angular acceleration:

2

2
1

ttiif αωθθ ++=

One can also obtain ( )ifif θθαωω −+= 222
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Example 10.1
A wheel rotates with a constant angular acceleration pf 3.50 rad/s2.  If 
the angular speed of the wheel is 2.00 rad/s at ti=0, a) through what 
angle does the wheel rotate in 2.00s?

( )
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2
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2
1

2

2

revrevrad

ttif

===

×+×=

+=−

π

αωθθ
Using the angular displacement 
formula in the previous slide, one gets

What is the angular speed at t=2.00s?

srad

tif

/00.9
00.250.300.2

=
×+=

+= αωω

Using the angular speed and 
acceleration relationship

Find the angle through which the wheel 
rotates between t=2.00 s and t=3.00 s.
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Rotational Energy
What do you think the kinetic energy of a rigid object 
that is undergoing a circular motion is? 

Since a rigid body is a collection of masslets, 
the total kinetic energy of the rigid object is

By defining a new quantity called, 
Moment of Inertia, I, as

Kinetic energy of a masslet, mi, 
moving at a tangential speed, vi, is

What are the dimension and unit of Moment of Inertia?

ri

mi

θ

O x

y vi

2== ω22

2
1

2
1

iiiii rmvmK

22 







=== ∑∑∑ ωω

i
ii

i
ii

i
iR rmrmKK 22

2
1

2
1

∑=
i

iirmI 2 2= ωIKR 2
1The above expression 

is simplified as
2mkg⋅ [ ]2ML

What similarity do you see between 
rotational and linear kinetic energies?

What do you think the 
moment of inertia is?

Measure of resistance of an object to 
changes in its rotational motion.

Mass and speed in linear kinetic energy are 
replaced by moment of inertia and angular speed.
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Example 10.4
In a system consists of four small spheres as shown in the figure, assuming the radii are 
negligible and the rods connecting the particles are massless, compute the moment of 
inertia and the rotational kinetic energy when the system rotates about the y-axis at ω.

222222 200 MlmmMlMlrmI i
i

i =⋅+⋅++== ∑

Since the rotation is about y axis, the moment of 
inertia about y axis, Iy, is

( ) 22222 2
2
1

2
1

ωωω MlMlIK R ===Thus, the rotational kinetic energy is 

Find the moment of inertia and rotational kinetic energy when the system rotates on 
the x-y plane about the z-axis that goes through the origin O.

x

y

This is because the rotation is done about y axis, 
and the radii of the spheres are negligible.Why are some 0s?

M Ml l
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m

b

b
O

( )2222222 2 mbMlmbmbMlMlrmI i
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i +=+++== ∑ ( ) ( ) 2222222 22
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2
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ωωω mbMlmbMlIKR +=+==
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Calculation of Moments of Inertia
Moments of inertia for large objects can be computed, if we assume 
the object consists of small volume elements with mass, ∆mi.

It is sometimes easier to compute moments of inertia in terms of volume of the elements 
rather than their mass

Using the volume density, ρ, replace 
dm in the above equation with dV.

The moment of inertia for the large rigid object is ∫∑ =∆=
→∆

dmrmrI
i

iimi

22

0
lim

dVm
dV
dm

ρρ == d   ; The moments of 
inertia becomes ∫= dVrI 2ρ

Example 10.5: Find the moment of inertia of a uniform hoop of mass M and radius R 
about an axis perpendicular to the plane of the hoop and passing through its center.

x

y

RO

dm The moment 
of inertia is

222 MRdmRdmrI === ∫∫

What do you notice 
from this result?

The moment of inertia for this 
object is the same as that of a 
point of mass M at the distance R.
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Example 10.6
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis perpendicular to the rod and passing through its center of mass.

The line density of the rod is  

What is the moment of inertia 
when the rotational axis is at 
one end of the rod.
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so the masslet is  dx
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dxdm == λ

The moment 
of inertia is  
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Will this be the same as the above.  
Why or why not?

Since the moment of inertia is resistance to motion, it makes perfect sense 
for it to be harder to move when it is rotating about the axis at one end.
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x

y

(x,y)

xCM

(xCM,yCM)

y CM

CM

Parallel Axis Theorem
Moments of inertia for highly symmetric object is relatively easy if the 
rotational axis is the same as the axis of symmetry.  However if the axis of 
rotation does not coincide with axis of symmetry, the calculation can still be 
done in simple manner using parallel-axis theorem. 2MDII CM +=

y

x

r

Moment of inertia is defined ( ) (1)   222 ∫∫ +== dmyxdmrI

Since x and y are

x’

y’

'     ;' yyyxxx CMCM +=+=

One can substitute x and y in Eq. 1 to obtain

( ) ( )[ ]
( ) ( )dmyxdmyydmxxdmyx

dmyyxxI

CMCMCMCM

CMCM

∫∫∫∫
∫

+++++=

+++=

2222

22

'''2'2

''

Since the x’ and y’ are the 
distance from CM, by definition ∫

∫
=

=

0'

0'

dmy

dmx
D

Therefore, the parallel-axis theorem
2MDII CM +=

What does this 
theorem tell you?

Moment of inertia of any object about any arbitrary axis are the same as 
the sum of moment of inertia for a rotation about the CM and that of the 
CM about the rotation axis.
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Example 10.8
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis that goes through one end of the rod, using parallel-axis theorem.

The line density of the rod is  

Using the parallel axis theorem

L
M

=λ

so the masslet is  dx
L
M

dxdm == λ

The moment of 
inertia about 
the CM 
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MDII CM
2+=

The result is the same as using the definition of moment of inertia.
Parallel-axis theorem is useful to compute moment of inertia of a rotation of a 
rigid object with complicated shape about an arbitrary axis
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Torque
Torque is the tendency of a force to rotate an object about some axis.  
Torque, τ, is a vector quantity.

FdrF =≡ φτ sinMagnitude of torque is defined as the product of the force 
exerted on the object to rotate it and the moment arm.

F
φ

d

Line of 
Action

Consider an object pivoting about the point P
by the force F being exerted at a distance r. 

P

r

Moment 
arm

The line that extends out of the tail of the force 
vector is called the line of action.
The perpendicular distance from the pivoting point 
P to the line of action is called Moment arm.

When there are more than one force being exerted on certain 
points of the object, one can sum up the torque generated by each 
force vectorially.  The convention for sign of the torque is positive if 
rotation is in counter-clockwise and negative if clockwise. 

d2

F2

22

21

dFFd −=

+=∑ τττ
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Torque & Angular Acceleration
Let’s consider a point object with mass m rotating in a circle.

What does this mean?

The tangential force Ft and radial force Fr

The tangential force Ft is

What do you see from the above relationship?

m
r

Ft

Fr

What forces do you see in this motion?

αmrmaF tt ==

The torque due to tangential force Ft is ατ 2mrrmarF tt ===

ατ I=
Torque acting on a particle is proportional to the angular acceleration.

What law do you see from this relationship? Analogs to Newton’s 2nd law of motion in rotation.

How about a rigid object?

r

dFt

dm

O

The external tangential force dFt is αdmrdmadF tt ==

αατ Idmr == ∫∑ 2

The torque due to tangential force Ft is
The total torque is

( )ατ dmrrdFd t
2==

What is the contribution due 
to radial force and why?

Contribution from radial force is 0, because its 
line of action passes through the pivoting 
point, making the moment arm 0.


