1443-501 Spring 2002
Lecture #19

Dr. Jaehoon Yu

The Pendulum
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The Pendulum

A simple pendulum also performs periodic motion.

The net force exerted on the bob Is
(o)
aF =T-mgcosq, =0

o) _ : _ _ d’s
aFt_-rnganA_ma_mdtz
Since the arc length, s,is s=Lq,

d’s . dqg _

: d? :
e L e =-gsing |results ) dt? = - %smq

Again became a second degree differential equation,

satisfying conditions for simple harmonic motion
2

d7g 9

dt2 L

g =-w?g giving angular frequency w = %

If g is very small, sing~q

2 L '
The period for this motionis T == 2p \P The period only depends on the
w g length of the string and the

gravitational acceleration
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Example 13.5

Christian Huygens (1629-1695), the greatest clock maker in history, suggested that an
International unit of length could be defined as the length of a simple pendulum having a
period of exactly 1s. How much shorter would out length unit be had this suggestion
been followed?

Since the period of asimple __ _ 2p _ L
. T=—=2p_ |—
pendulum motion is W g
The length of the pendulum | _ T%g
in terms of T is B 4p ?
Thus the length of the _T?g 1798 _
ndulum when T=1s is L=-"—7 7~ = 0.248m
pe ap 4ap

Therefore the difference in

ength with respecttothe DL =1- L =1- 0.248 = 0.752m

current definition of 1m Is
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Physical Pendulum

Physical pendulum is an object that oscillates about a fixed
axis which does not go through the object’s center of mass.

X

CAN:
dsing A

Consider a rigid body pivoted at a point O that is a distance d from the CM.
i The magnitude of the net torque provided by the gravity is

ét =-mgd sinq

Then ét =la =1 dq =-mgd sing
mg dt®
: 2
Therefore, one can rewrite d c2| __mg sng » - ge‘ngd % =-wxy
dt e |l o
Thus, the angular frequency wis = |99

By measuring the period of
And the period for this motionis T =

physical pendulum, one can
2P _op |1 measure moment of inertia.
W mgd
Apr. 8, 2002
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Example 13.6

A uniform rod of mass M and length L is pivoted about one end and oscillates in a vertical
plane. Find the period of oscillation if the amplitude of the motion is small.

O Moment of inertia of a uniform rod, 1 5
Pivot . . | = —ML
rotating about the axis at one end is 3

The distance d from the pivot to the CM is L/2,
therefore the period of this physical pendulum is

2
" Mgd 3MgL 39

Calculate the period of a meter stick that is pivot about one end and is oscillating in
a vertical plane.

Since L=1m [2L [ 2 So the 1
C T=2 — =2 —  =1.64s . ——=0. 1
the period is P 39 V308 frequency is f - 0.61s
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Torsional Pendulum

When a rigid body is suspended by a wire to a fixed support at the top and the
body is twisted through some small angle g, the twisted wire can exert a restoring
torque on the body that is proportional to the angular displacement.

The torgue acting on the body due to the wire Iis

t _ k K is the torsion
- q constant of the wire

Applying the Newton'ssecond o . . dig _
law of rotational motion at =la=l dt2 @
2 20
Then, again the equation becomes < (3 = - (?Lg)q =-w7
dt el g
Thus, the angular frequency wis — — \/E This result works as
I

long as the elastic limit

And the period for this motionis 1 - 2P _ 2 \ﬁ of the wire is not
k exceeded
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Simple Harmonic and Uniform Circular Motions

Uniform circular motion can be understood as a
superposition of two simple harmonic motions in x and y axis.

y4 y X.AJ?I P
// - \\ // //
/ A P // y \ // A \\
/
I /(\ l | I G, 1
i 0 > 1T 0l x>y ' Olve oy ' 0 >
\ A Q \ «Qy \ Q
\ / \ / \ / \ /
\\ // _\\~’// \\~’// \\~'//
t=0 = g=wi+f
When the particle rotates at a uniform angular x = Acosq = Acos(wt +f )
speed w, x and y coordinate position become y = Asing = Asin (wt +f )
Since the linear velocity in a uniform circular V, =-vsing =- Awsin(wt +f )
motion is Aw, the velocity components are v, = +vcosq = Aw cos(wt +f )
— — 2
Since the radial acceleration in a uniform circular @ = - 2€0SQ = - Aw? cos(wt +f )
motion is v4/A=w?A, the components are a, =-asing =- Aw?sin (wt +f )
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Example 13.7

A particle rotates counterclockwise in a circle of radius 3.00m with a constant angular
speed of 8.00 rad/s. At t=0, the particle has an x coordinate of 2.00m and is moving to
the right. A) Determine the x coordinate as a function of time.

Since the radius is 3.00m, the amplitude of oscillation in x direction is 3.00m. And the
angular frequency is 8.00rad/s. Therefore the equation of motion in x direction is

x = Acosq = (3.00m)cos(8.00t +f )

Since x=2.00, whent=0  2.00 = (3.00m)cosf ; f = cos 18@9— 48.2°

e3.00 g
However, since the particle was

moving to the right f =-48.2°, = (3'00 m)COS(8'OOt ' 48'20)

Find the x components of the particle’s velocity and acceleration at any time t.

Using the = B __ (3 00,8,00)sin(8.00t - 482)=(- 240m/g)sinfB.0at- 482)
displcement dt

Likewise, dv

from velocity &= g =( 240800)codB 0 - 482 = (- 1921/ ?)codg 00t - 482)
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Damped Oscillation

More realistic oscillation where an oscillating object loses its mechanical
energy in time by a retarding force such as friction or air resistance.

o]

a F,=-k<-bv=ma,

Let’s consider a system whose retarding force

IS air resistance R=-bv (b is called damping - b dx = d?®x
coefficient) and restoration force is -kx T T
The solution for the above 2" order b,

differential equation is X = Ae 2m COS(Wt +f )
The angular frequency w W = k @b 92

for this motion is “\m me g

This equation of motion tells us that when the retarding force is much smaller than restoration
force, the system oscillates but the amplitude decreases, and ultimately, the oscillation stops.

We express the , @b o Where the natural _ |k
angular frequency as &2mg frequency w, m
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More on Damped Oscillation

The motion is called Underdamped when the magnitude of
the maximum retarding force R, = bv__. <kA

How do you think the damping motion would change as
retarding force changes?

max max

b As the retarding force become larger, the amplitude reduces
-bv , ® - . S . .
more rapidly, eventually stopping its equilibrium position

w =0
Under what condition this system

. b
does not oscillate? W, = —
2m

The system is Critically damped b =2mw, = 2+/mk

Once released from non-equilibrium position, the object

- ?
What do'youthink happen? 1 return to its equilibrium position and stops.

If the retarding force is larger
than restoration force

Once released from non-equilibrium position, the object would return
Apr. 8, 2002 to its equilibrium position and stops, but a lot slower than before

s Vi 1 Uy VUV LUI Y (] v

R =bv. . >KA The systemis Overdamped



Rotational Kinematics

The first type of motion we have learned in linear kinematics was
under a constant acceleration. We will learn about the rotational
motion under constant acceleration, because these are the simplest

motions in both cases.

Just like the case In linear motion, one can obtain

Angular Speed under constant
angular acceleration:

Angular displacement under
constant angular acceleration:

One can also obtain

W, =w. +at

d; =q; tw;t +%at2

sz :Wi2+2a(qf - (;

)
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Example 10.1

A wheel rotates with a constant angular acceleration pf 3.50 rad/s?. If
the angular speed of the wheel is 2.00 rad/s at t,=0, a) through what

angle does the wheel rotate in 2.00s?

Using the angular displacement

q¢ - di =wt+%at2

formula in the previous slide, one gets  |= 2.00 - 2.00 + %3_50 " (2.0
=11.0rad = grev .=1.75rev.
2p
What is the angular speed at t=2.00s? [[w; =w; +at
. =2.00+3.50" 2.00
Using the angular speed and Iy
acceleration relationship wrrz—s

Find the angle through which the wheel
rotates between t=2.00 s and t=3.00 s.

Apr. 8, 2002
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g, =2.00" 3.00 + %3.50’ (3.00 ) = 21 .8rad

Dg =q,- q, =10.8rad :Ere\/.:l.nre\/.

2p
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Rotational Energy

What do you think the kinetic energy of a rigid object
that is undergoing a circular motion is?

Kinetic energy of a masslet, m;,
moving at a tangential speed, v;, Is

1, 1 ,
K. ==mv’ ==mr°w
| Zm | Zm |

Since a rigid body is a collection of masslets, - _lag 5,0
= K == mrw’ ==¢cgq mr’w’
the total kinetic energy of the rigid object is Ke al‘ K 2? I zg"?l i -

By defining a new quantity called, | = é mnz The above expression
Moment of Inertia, I, as i IS simplified as

L
K=o W

What are the dimension and unit of Moment of Inertia? kgxrf “\/I EJ

What do you think the Measure of resistance of an object to
moment of inertia is? changes in its rotational motion.

What similarity do you see between  Mass and speed in linear kinetic energy are
rotational and linear kinetic energies? replaced by moment of inertia and angular speed.
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Example 10.4

In a system consists of four small spheres as shown in the figure, assuming the radii are
negligible and the rods connecting the particles are massless, compute the moment of
Inertia and the rotational kinetic energy when the system rotates about the y-axis at w.

y . e .
), Since the rotation is about y axis, the moment of
Inertia about y axis, 1,, is
b y
Q- | | O | =8 mr2=MI2+MI2+mx0%+m>0? = 2M| 2
O b X i
Why are some 0s? This Is because the rotation is done about y axis,
M) y " and the radii of the spheres are negligible.

1 1
Thus, the rotational kinetic energy is  |Kg = 5 lw? = E(ZMI 2)NZ = MI*w*

Find the moment of inertia and rotational kinetic energy when the system rotates on
the x-y plane about the z-axis that goes through the origin O.

=8 =M M mo? =21 ) = w2 =2 oM+ 2t = (Wi + e

Apr. 8, 2002 1443-501 Spring 2002 14
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Calculation of Moments of Inertia

Moments of inertia for large objects can be computed, if we assume

the object consists of small volume elements with mass, Dm..
: : _ : T Q 2 — N2
The moment of inertia for the large rigid object | = lim & £"Dm =g “dm
[
It Is sometimes easier to compute moments of inertia in terms of volume of the elements
rather than their mass

Using the volume density, r, replace . _dm . _ The moments of — N2
dm in the above equation with dV. =Ty Inertia becomes | Crr av

Example 10.5: Find the moment of inertia of a uniform hoop of mass M and radius R
about an axis perpendicular to the plane of the hoop and passing through its center.

&y The moment | = ¢r?dm=R?¢dm= MR’
of inertia IS

The moment of inertia for this
object is the same as that of a
point of mass M at the distance R.

X What do you notice
from this result?

Apr. 8, 2002 1443-501 Spring 2002 15
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Example 10.6

Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an
axis perpendicular to the rod and passing through its center of mass.

M
y The line density of the rod is =T
so the masslet is dm=| dx:%dx
- M M &l u'°
W Th? mc_)m_ent | = A 2dm = 6_/2 dez_ix3g
r of inertia is WL L& H.,
_M&g elold_Ma0 ML
3L E20 & 254 BLE45 12
2 z L
What is the moment of inertia | = ¢y*dm = 5> LM dx = '\c % x3§
when the rotational axis is at y y L2 °
) = —|(L ¥ = |_3 =
one end of the rod A (L) 3|_( ) 3

Will this be the same as the above. Since the moment of inertia is resistance to motion, it makes perfect sense

Why or why not?

for it to be harder to move when it is rotating about the axis at one end.

Apr. 8, 2002
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Parallel Axis Theorem

Moments of inertia for highly symmetric object is relatively easy if the
rotational axis is the same as the axis of symmetry. However if the axis of
rotation does not coincide with axis of symmetry, the calculation can still be

done in simple manner using parallel-axis theorem. | =1, +MD’
y
A Moment of inertia is defined 1 =¢r*dm= C\NXZ +y2)dm (1)
(xy)  Sincexandyare X=Xy, +X; Y=VYeut+Y
24 One can substitute x and y in Eq. 1 to obtain
> _ 2 2
- | _CKXCM +X‘) +(yCM +yl) Jdm
3 e - o . 2yl
EA N 5 )éM +y(23M Cdm+2>Q:|v| C\dem+2yCM Cy'dm'i'e(xl +y“am
- > o jx'dm = 0
y  Since the X and y" are the ox am =
le Xom . g distance from CM, by definition cy'dm =0
X Therefore, the parallel-axis theorem | =1y +MD?
What does this Moment of inertia of any object about any arbitrary axis are the same as
theorem tell you? the sum of moment of inertia for a rotation about the CM and that of the

CM about the rotation axis.



Example 10.8

Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an
axis that goes through one end of the rod, using parallel-axis theorem.

y The line density of the rod is | :MT
so the masslet is dm=| dx:%dx
cm  OX 5 , L/2
w The moment of | = & 2dm = (\)“2 XM o =Mel sl
< r inertia about Wz L L& H
the CM M %_ .3 - .3 \ ) 5

Using the parallel axis theorem | =1, +D°M =

¢ : +
12 e2g 12 4

The result is the same as using the definition of moment of inertia.

Parallel-axis theorem is useful to compute moment of inertia of a rotation of a

rigid object with complicated shape about an arbitrary axis
Apr. 8, 2002 1443-501 Spring 2002 18
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Torque

Torque is the tendency of a force to rotate an object about some axis.
Torque, t, Is a vector guantity.

Consider an object pivoting about the point P
by the force F being exerted at a distance r.

Lineof  The line that extends out of the tail of the force
Action  yector is called the line of action.

d T 3 The perpendicular distance from the pivoting point

Moment P to the line of action is called Moment arm.
arm

Magnitude of torque Is defined as the product of the force
exerted on the object to rotate it and the moment arm.

t °rFsinf =Fd

o
When there are more than one force being exerted on certain a t =t . +1 5
points of the object, one can sum up the torque generated by each

force vectorially. The convention for sign of the torque is positive if = Fd - F2d2

rotation is in counter-clockwise and negative if clockwise.
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Torque & Angular Acceleration

F, Let's consider a point object with mass m rotating in a circle.

77 D U What forces do you see in this motion?
[
\ . .
.l i ) The tangential force F, and radial force F,
\\\ p The tangential force F is F =ma =nmra
7

The torque due to tangential force F,is ~ t =Fr =mar =nr‘a

What do you see from the above relationship? t =la

What does this mean? Torque acting on a particle is proportional to the angular acceleration.

What law do you see from this relationship? ~ Analogs to Newton's 2" law of motion in rotation.

How aboutarigid object?  The external tangential force dF, is dF, = dma, = dmra

dF
dm  Thetorque due to tangential force Fiis  dt =dRr = (rzdm)a
r The total torqueis gt =a¢r’dm=la
What is the contribution due Contribution from radial force is 0, because its
@) dial f d whv? line of action passes through the pivoting
Apr. 8, 2002 to radial force and w y: 2  point, making the moment arm 0.
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Example 10.10

A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is

free to rotate about the pivot in the vertical plane. The rod is released from rest in the

horizontal position what is the initial angular acceleration of the rod and the initial linear
acceleration of its right end?

/2 The only force generating torque is the gravitational force Mg
L L
{ :Fd :FE:MQE: Ia
v Mg )
e X \ 2

Since the moment of inertia of the rod | = @erdm: @LX2| dx:@ 92& 3 _ML
when it rotates about one end is eLa@dpy 3

We obtain Using the relationship between tangential and

angular acceleration
__MgL_ Mgl _3g )

I M2~ 2L _ 39 What does this mean?
T = La _E The tip of the rod falls faster than
an object undergoing a free fall.
Apr. 8, 2002 1443-501 Spring 2002 21
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Work, Power, and Energy in Rotation

F Let's consider a motion of a rigid body with a single external
force F exerted on the point P, moving the object by ds.
The work done by the force F as the object rotates

through infinitesimal distance ds=rdq in a time dt is
dW = F>ds = (F sinf )rdq
What is Fsinf ?  The tangential component of force F.

What is the work done by Zero, because it is perpendicular to the
radial component Fcosf ?  displacement.

Since the magnitude of torque is rFsinf,  dW =tdg
_dW _tdg _ How was the power

The rate of work, or power becomes P i dt W defined in linear motion?
The rotational work done by an external force o { =g = aed_w O_ | alw Getlq 0
equals the change in rotational energy. &dt g 8dq ;Fe dt g

The work put in by the external force then

Jd o w

W =S4 tdg =¢

Apr. 8, 2002 asrspd QAN =Q
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Similarity Between Linear and Rotational Motions

All physical quantities in linear and rotational motions show striking similarity.

Similar Quantity Linear Rotational
Mass Mass M Moment of Inertia
| = ¢r*dm
Length of motion | Distance L Angle g (Radian)
Speed "= w s G
Acceleration 2 = g 2 = G
Force Force F=ma |Torque t =la
Work Work W =g’ Fox Work W =Q'tda
Power P=F » P=tw
Momentum p=my L=1w
Kinetic Energy | Kinetic * =™ * |Rotational k= =5'w"
Apr. 8, 2002 1443-501 Spring 2002 23
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Rolling Motion of a Rigid Body

What is a rolling motion? A more generalized case of a motion where the
rotational axis moves together with the object

A rotational motion about the moving axis

To simplify the discussion, let's 1.  Limit our discussion on very symmetric
make a few assumptions objects, such as cylinders, spheres, etc

2. The object rolls on a flat surface

Let's consider a cylinder rolling without slipping on a flat surface

Under what condition does this “Pure Rolling” happen?

P The total linear distance the CM of the cylinder moved is

s=Hy
RL :
/S Thus the linear Vo = dS: ﬂ =Rw
> speed ofthe CMis M (it at
s=Rq
Apr. 8, 2002 1443-501 Spring 2002 Condlition for “Pure Rolling” 24
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Total Kinetic Energy of a Rolling Body

What do you think the total kinetic Since it is a rotational motion about the point
energy of the rolling cylinder is? P, we can writ the total kinetic energy
of 2v> K = 1 | w2 Where, I, is the moment of
CM - P . . )
o 2 Inertia about the point P.
>Vom Using the parallel axis theorem, we can rewrite
1 1 1
ZEIPWZ ZEICMWZ +§MR2VV2
Since v, =Rw, the above K 1 v
relationship can be rewritten as M
What does this equation mean? Rotational kinetic Translational Kinetic
energy about the CM energy of the CM
Total kinetic energy of a rolling motion is the sum
of the rotational kinetic energy about the CM And the translational
Apr. 8, 2002 1443-501 Spring 2002 kinetic of the CM 25

Dr. J. Yu, Lecture #19



Example 11.1

For solid sphere as shown in the figure, calculate the linear speed of the CM at the
bottom of the hill and the magnitude of linear acceleration of the CM.

What must we know first? The moment of inertia the
sphere with respect to the CM!!

|y = (‘)"de:EMR2

Thus using the formula in the previous slide

Vem
2 gh 2 gh /10
Vey = g - = \/ g = _gh
1+ 1., /MR 1+2/5 4
Since h=xsinq 2 10 : Using kinematic 2 _
. ' Vo, = —0gx sin . : Vo = 28y X
one obtains M 7 9 k relationship M M
The linear acceleration Vi, _5 dn What do you see?
of the CM is M = oy 7 I | Uinear acceleration of a sphere does

not depend on anything but g and g
Apr. 8, 2002 1443-501 Spring 2002 26
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Torque and Vector Product

Let’s consider a disk fixed onto the origin O and
the force F exerts on the point p. What happens?

t=rxF

The disk will start rotating counter clockwise about the Z axis
> Y The magnitude of torque given to the disk by the force F is

F t = Frsinf
But torque is a vector quantity, what is the direction? - - —
How is torque expressed mathematically? ’[ 0 I F

What is the direction?  The direction of the torque follows the right-hand rule!!

The above quantity is called C°A B

Vector product or Cross product ‘5 ‘ = ‘K’ 5‘ - ‘Kug‘sin q

What is the result of a vector product?  What is another vector operation we've learned?

Another vector Scalar product  C © AXB = ‘AHB‘cosq

Apr. 8, 2002 1443-501 Spring 2002
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Angular Momentum of a Particle

If you grab onto a pole while running, your body will rotate about the pole, gaining
angular momentum. We've used linear momentum to solve physical problems
with linear motions, angular momentum will do the same for rotational motions.

‘ Let's consider a point-like object ( particle) with mass m located

at the vector location r and moving with linear velocity v

L=rxp

—

The instantaneous angular momentum |— 9 oo
L of this particle relative to origin O is L r P

>y
What is the unit and dimension of angular momentum?  kgprt/s’

Note that L depends on origin O. Why?  Because r changes
What else do you learn?  The direction of L is +z
Since p is mv, the magnitude of L becomes L = mvr sin f

P

What do you learn from this?  If the direction of linear velocity points to the origin of
rotation, the particle does not have any angular momentum.

l)hgep?r:gﬁtglhas If the linear velocity is perpendicular to position vector, the
ADr.8.2002 particle moves exactly the same way as a point on a rim.

Dr. J. Yu, Lecture #19



Angular Momentum and Torgue

Can you remember how net force exerting on a particle o — d E

and the change of its linear momentum are related? a k= dt

Total external forces exerting on a particle is the same as the change of its linear momentum.

The same analogy works in rotational motion between torque and angular momentum.

o —_—

Net torque acting on a particle is |3 ¢ =~ § - dp

dt

_dl 5): = ﬁ:@r dp
dt b dt dt
—~

Why does this work? ~ Because v is parallel to
the linear momentum

=T

Thus the torque-angular o —~ _d L
momentum relationship at-= ot

The net torque acting on a particle is the same as the time rate change of its angular momentum

RAPI. 0, LUUL L TUTIUVL UMIITIY LUV 29
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Example 11.4

A particle of mass m is moving in the xy plane in a circular path of radius r and linear
velocity v about the origin O. Find the magnitude and direction of angular momentum
with respect to O.

y 4 Using the definition of angular momentum
V —_ —_ —_ —_ —_ —_ —_
r L=r" p=r"mv=mr_v
> Since both the vectors, r and v, are on x-y plane and
O X using right-hand rule, the direction of the angular
momentum vector is +z (coming out of the screen)

The magnitude of the angular momentum is ‘E‘ =|mr” V| = mrvsinf = mrvsin90° = mrv

So the angular momentum vector can be expressedas | = mrvk

Find the angular momentum in terms of angular velocity w.

Using the relationship between linear and angular speed

L =mrvk = mrawk = mr?w = |w

Apr. 8, 2002 1443-501 Spring 2002 30
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Example 11.6

A rigid rod of mass M and length | pivoted without friction at its center. Two particles of mass
m, and m, are connected to its ends. The combination rotates in a vertical plane with an

angular speed of w. Find an expression for the magnitude of the angular momentum.

y 4 The moment of inertia of this system IS
1 1
2 | =1ty + 1, = =MIZ+= mlI2+ m,| *
I 2 12 4
\ q> mz : | 2 oo O 2
> wl“ & 0
0 =—¢cM+m+m = | = jw="8EM +m +m, =
/ X 4 &3 a Q m, -
m, . . . .
i Find an expression for the magnitude of the angular acceleration of the
m; g system when the rod makes an angle g with the horizon.
If m, =m,, no angular First compute net  t, =m,g I—cosq; t,=-m,g I—cosq
momentum because net external torque 2
torque is 0. (=t +t, =900 (m, - m,)
If g=+/- p/2, at equilibrium 2
1
S0 no angular momentum. Thus a . St E(ml - m)ol cosq i sy
T T 1PA 6 el 69
Apr. 8, 2002 becomes 4, 2EEMmemS M em e m, S
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Example 11.8

A start rotates with a period of 30days about an axis through its center. After the star
undergoes a supernova explosion, the stellar core, which had a radius of 1.0x10%km, collapses
into a neutron start of radius 3.0km. Determine the period of rotation of the neutron star.

The period will be significantly shorter,
because its radius got smaller.

1. There is no torque acting on it
2. The shape remains spherical
3. Its mass remains constant
L

What is your guess about the answer?

Let's make some assumptions:

Using angular momentum i f
conservation lw, =1 ,w,
W = 2p
The angular speed of the star with the period T is B T
2
Thus  w, = Wi mriz 2P
|, mr; T,

o 2 o) .2
T, =P -&iop o8 30 0 554 =277 10 °days = 0.23s
W, r< - el.0" 10" g
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Conditions for Equilibrium

What do you think does the term “An object is at its equilibrium” mean?

The object is either at rest (Static Equilibrium) or its center of mass
IS moving with a constant velocity (Dynamic Equilibrium).

When do you think an object is at its equilibrium?
o —
Translational Equilibrium: Equilibrium in linear motion @ F=0

Is this it?  The above condition is sufficient for a point-like particle to be at its static
equilibrium. However for object with size this is not sufficient. One more
condition is needed. What is it?

Let's consider two forces equal magnitude but opposite direction acting
on a rigid object as shown in the figure. What do you think will happen?

al
The object will rotate about the CM. The nettorque 2 +* _

acting on the object about any axis must be 0. a

For an object to be at its static equilibrium, the object should not

h I I d
ave linear or angular spee : V — O W = O
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More on Conditions for Equilibrium

To simplify the problems, we will only deal with forces acting on x-y plane, giving torque
only along z-axis. What do you think the conditions for equilibrium be in this case?

The six possible equations from the two vector equations turns to three equations.

éE:O é.Fx:O é{:O étzzo
aF, =0

What happens if there are many forces exerting on the object?

If an object Is at its translational static equilibrium, and if the
net torque acting on the object is 0 about one axis, the net
torque must be 0 about any arbitrary axis.

Net Force exerting on the object A F=Fi+F2+F3+x=0

al

Net torque about O to=r1" Fi+rs” Fa+rs Fs+xe=3ri” Fi =0
Position of force F;about 0" 7. =y, . p

Net torque about O' - §¢ o =1, Futrs” Fobmecfa- 1 Futlro- 1) Fobme g Fi- 1" & F
ar Fi-r0=3to=0 34
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Example 12.1

A uniform 40.0 N board supports a father and daughter weighing 800 N and 350 N,
respectively. If the support (or fulcrum) is under the center of gravity of the board and
the father is 1.00 m from CoG, what is the magnitude of normal force n exerted on the

board by the support?

Since there is no linear motion, this system
IS in its translational equilibrium

a F =0

é. Fy,=Mzg+M.g+Myg-n=0
Therefore the magnitude of the normal force N =40.0+800+350=119(N

Determine where the child should sit to balance the system.
The net torque about the fulcrum ¢ = pg .9>0+M _g31.00- M, g>x=0
by the three forces are

_ 800

Therefore to balancc_e the system = Mcg 1 00mM = === x4 .00m = 2.29m
the daughter must sit M,g 350
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Example 12.1 Continued

Rotational axis Determine the position of the child to balance the
\.\ system for different position of axis of rotation.

The net torque about the axis of
rotation by all the forces are

t =M_g>x/2+M_g>(1.00+x/2)- n>x/2- M ,g>x/2=0

Since the normal forceis N=Mgg+M.g+M,g
The net torque can t :MBg>x/2+I\/IFg>(1.OO+x/2)

be rewritten - (M_,g+M_g+M_g)xx/2- M gxx/2
=M:gx.00- M;g>x=0 What do we learn?
Therefore X = Me 94 X.00m _ 820 X.00m=2.29m No matter where the
M_g 350 rotation axis is, net effect of
Apr. 8, 2002 1443-501 Spring 2002 the torque is identical.
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Example 12.3

A uniform horizontal beam with a length of 8.00m and a weight of 200N is attached to a walll
by a pin connection. Its far end is supported by a cable that makes an angle of 53.0° with the
horizontal. If 600N person stands 2.00m from the wall, find the tension in the cable, as well as
the magnitude and direction of the force exerted by the wall on the beam.

- R XK First the translational equilibrium,
500N | ¥200N using components
==
- ‘ A F, =Rcogy - Tcos530° =0
= 53.09 Rsing Tsin53 o _ _
o a F, =Rsinqg +Tsin53.0° - 600N - 200N =0
g > Rcosq €0s53 y
8m
o) - . iy ) , ) —
From the rotational equilibrium ~ @t =1 Sin>30 8.00- 600N™2.00- 200N >4.00m=0
T =313N
Using the Rcogy =T cos53.0° And the magnitude of R is
randlationa] RSN =~ TSiN530"+600N +200N Too$30 313 cos530
i a800- 313 SiN530° & R= = . =98N
equilibrium ¢ = g2 @809- 313 SNS30 0_ 4, 4. cogy cos711
313c0s530°
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Example 12.4

A uniform ladder of length | and weight mg=50 N rests against a smooth, vertical wall. If

the coefficient of static friction between the ladder and the ground is m=0.40, find the
minimum angle g,,;, at which the ladder does not slip.

P First the translational equilibrium,
using components

A F, =f-P=0
‘n mg a

0¥ éFy:-mg”‘:O

Thus, the normal force is n=mg =50N

The maximum static friction force

just before slipping is, therefore, fi =mn=0.4" 50N =20N =P

: _— I :
From the rotational equilibrium ato=- Mg COYpy, * Plsing,,, =0
= o T 0= g 0= 5
e2Pg e40N g
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Example 12.7

A solid brass sphere is initially under normal atmospheric pressure of 1.0x10°N/m2. The
sphere is lowered into the ocean to a depth at which the pressures is 2.0x10°N/m?. The

volume of the sphere in air is 0.5m3. By how much its volume change once the sphere is
submerged?

DP
DV
Vi
DPV.

The amount of volume changeis DV = - —

From table 12.1, bulk modulus of brass is 6.1x10% N/m?

The pressure change DPis DP =P, - P =2.0" 10" - 1.0" 10° » 2.0 10’

Since bulk modulusis B = -

Therefore the resulting ~ 207107 0.5 _ s a4 3
volume change DV is DV =V, -V, =- 6.1 102 =-16 10"m
The volume has decreased.
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