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1. The Pendulum
2. Physical Pendulum
3. Simple Harmonic and Uniform Circular Motions
4. Damped Oscillation
5. Review Examples Ch. 10-13

No Homework Assignment today!!!!!
2nd term exam on Wednesday, Apr. 10. Will cover chapters 10 -13.
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The Pendulum
A simple pendulum also performs periodic motion.

The net force exerted on the bob is 
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Again became a second degree differential equation, 
satisfying conditions for simple harmonic motion

If θ is very small, sinθ~θ

Since the arc length, s, is  
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=ωgiving angular frequency

The period for this motion is
g
L

T π
ω
π

2
2

== The period only depends on the 
length of the string and the 
gravitational acceleration
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Example 13.5
Christian Huygens (1629-1695), the greatest clock maker in history, suggested that an 
international unit of length could be defined as the length of a simple pendulum having a 
period of exactly 1s.  How much shorter would out length unit be had this suggestion 
been followed?

Since the period of a simple 
pendulum motion is g

L
T π

ω
π

2
2

==

The length of the pendulum 
in terms of T is 2

2

4π
gT

L =

Thus the length of the 
pendulum when T=1s is m

gT
L 248.0

4
8.91

4 22

2

=
×

==
ππ

Therefore the difference in 
length with respect to the 
current definition of 1m is

mLL 752.0248.011 =−=−=∆
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Physical Pendulum
Physical pendulum is an object that oscillates about a fixed 
axis which does not go through the object’s center of mass.

Therefore, one can rewrite

Thus, the angular frequency ω is

The magnitude of the net torque provided by the gravity is  
θτ sinmgd−=∑

I
mgd

=ω

And the period for this motion is
mgd

I
T π

ω
π

2
2

==

By measuring the period of 
physical pendulum, one can 
measure moment of inertia.

O

CM

d

dsinθ

θ

mg

Consider a rigid body pivoted at a point O that is a distance d from the CM.

θ
θ

ατ sin2

2
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
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
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I
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I
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d
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2

Does this work for 
simple pendulum?
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Example 13.6
A uniform rod of mass M and length L is pivoted about one end and oscillates in a vertical 
plane.  Find the period of oscillation if the amplitude of the motion is small.

Moment of inertia of a uniform rod, 
rotating about the axis at one end is

Since L=1m, 
the period is

L

O
Pivot

CM

Mg

2

3
1

MLI =

The distance d from the pivot to the CM is L/2, 
therefore the period of this physical pendulum is

g
L

MgL
ML

Mgd
I

T
3
2

2
3
2

22
2 2

πππ
ω
π

====

Calculate the period of a meter stick that is pivot about one end and is oscillating in 
a vertical plane.

s
g
L

T 64.1
8.93

2
2

3
2

2 =
⋅

== ππ So the 
frequency is

161.0
1 −== s
T

f
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Torsional Pendulum
When a rigid body is suspended by a wire to a fixed support at the top and the 
body is twisted through some small angle θ, the twisted wire can exert a restoring 
torque on the body that is proportional to the angular displacement.

Applying the Newton’s second 
law of rotational motion

Thus, the angular frequency ω is

The torque acting on the body due to the wire is  

κθτ −=

I
κ

ω =

And the period for this motion is
κ

π
ω
π I

T 2
2

==

This result works as 
long as the elastic limit 
of the wire is not 
exceeded

κθ
θ

ατ −===∑ 2

2

dt
d

II

κ is the torsion 
constant of the wire 

θωθ
κθ 2−=






−=

Idt
d

2

2

O

P
θmax

Then, again the equation becomes
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Simple Harmonic and Uniform Circular Motions
Uniform circular motion can be understood as a 
superposition of two simple harmonic motions in x and y axis.

When the particle rotates at a uniform angular 
speed ω, x and y coordinate position become

Since the linear velocity in a uniform circular 
motion is Aω, the velocity components are
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Since the radial acceleration in a uniform circular 
motion is v2/A=ω2Α, the components are

( )
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φωωθ
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+−=−=
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Example 13.7
A particle rotates counterclockwise in a circle of radius 3.00m with a constant angular 
speed of 8.00 rad/s.  At t=0, the particle has an x coordinate of 2.00m and is moving to 
the right.   A) Determine the x coordinate as a function of time.

Since the radius is 3.00m, the amplitude of oscillation in x direction is 3.00m.  And the 
angular frequency is 8.00rad/s.  Therefore the equation of motion in x direction is

Since x=2.00, when t=0

However, since the particle was 
moving to the right φ=-48.2o, 

Using the 
displcement

( ) ( )φθ +== tmAx 00.8cos00.3cos

( ) o2.48
00.3
00.2

cos   ;cos00.300.2 1 =





== −φφm

( ) ( )o2.4800.8cos00.3 −= tmx
Find the x components of the particle’s velocity and acceleration at any time t.

( ) ( ) ( ) ( )o2.4800.8sin/0.242.4800.8sin00.800.3 −−=−⋅−== tsmt
dt
dx

vx

Likewise, 
from velocity ( ) ( ) ( ) ( )o2.4800.8cos/1922.4800.8cos00.80.24 2 −−=−⋅−== tsmt

dt
dv

ax
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Damped Oscillation
More realistic oscillation where an oscillating object loses its mechanical 
energy in time by a retarding force such as friction or air resistance.

2

2

dt
xd

m
dt
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bkx

mabvkxF xx

=−−

=−−=∑

The angular frequency ω 
for this motion is

The solution for the above 2nd order 
differential equation is  ( )φω +=

−
tAex

t
m
b

cos2

We express the 
angular frequency as

This equation of motion tells us that when the retarding force is much smaller than restoration 
force, the system oscillates but the amplitude decreases, and  ultimately, the oscillation stops.

Let’s consider a system whose retarding force 
is air resistance R=-bv (b is called damping 
coefficient) and restoration force is -kx

2

2
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
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

−=
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2
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
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−= 2

0 m
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ωω
m
k

=0ωWhere the natural 
frequency ω0
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More on Damped Oscillation

kAbv −→− max
As the retarding force become larger, the amplitude reduces 
more rapidly, eventually stopping its equilibrium position

The motion is called Underdamped when the magnitude of 
the maximum retarding force Rmax = bvmax <kA

The system is Critically damped

How do you think the damping motion would change as 
retarding force changes?

mkmb
m
b

22
2

0

==

=

=

0

0

ω

ω

ω
Under what condition this system 
does not oscillate?

If the retarding force is larger 
than restoration force

kAbvR >= maxmax The system is Overdamped

What do you think happen? Once released from non-equilibrium position, the object 
would return to its equilibrium position and stops.

Once released from non-equilibrium position, the object would return 
to its equilibrium position and stops, but a lot slower than before
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Rotational Kinematics
The first type of motion we have learned in linear kinematics was 
under a constant acceleration.  We will learn about the rotational 
motion under constant acceleration, because these are the simplest 
motions in both cases.

tif αωω +=

Just like the case in linear motion, one can obtain

Angular Speed under constant 
angular acceleration:

Angular displacement under 
constant angular acceleration:

2

2
1

ttiif αωθθ ++=

One can also obtain ( )ifif θθαωω −+= 222
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Example 10.1
A wheel rotates with a constant angular acceleration pf 3.50 rad/s2.  If 
the angular speed of the wheel is 2.00 rad/s at ti=0, a) through what 
angle does the wheel rotate in 2.00s?

( )

.75.1.
2

0.11
0.11

00.250.3
2
1

00.200.2

2
1

2

2

revrevrad

ttif

===

×+×=

+=−

π

αωθθ
Using the angular displacement 
formula in the previous slide, one gets

What is the angular speed at t=2.00s?

srad

tif

/00.9
00.250.300.2

=
×+=

+= αωω

Using the angular speed and 
acceleration relationship

Find the angle through which the wheel 
rotates between t=2.00 s and t=3.00 s.

( )

.72.1.
2

8.10
8.10

8.2100.350.3
2
1

00.300.2

0.11

2

2
3

2

revrevrad

rad

rad

===−=∆

=×+×=

=

3 π
θθθ

θ

θ
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Rotational Energy
What do you think the kinetic energy of a rigid object 
that is undergoing a circular motion is? 

Since a rigid body is a collection of masslets, 
the total kinetic energy of the rigid object is

By defining a new quantity called, 
Moment of Inertia, I, as

Kinetic energy of a masslet, mi, 
moving at a tangential speed, vi, is

What are the dimension and unit of Moment of Inertia?

ri

mi

θ

O x

y vi

2== ω22

2
1

2
1

iiiii rmvmK

22 







=== ∑∑∑ ωω

i
ii

i
ii

i
iR rmrmKK 22

2
1

2
1

∑=
i

iirmI 2 2= ωIKR 2
1The above expression 

is simplified as
2mkg⋅ [ ]2ML

What similarity do you see between 
rotational and linear kinetic energies?

What do you think the 
moment of inertia is?

Measure of resistance of an object to 
changes in its rotational motion.

Mass and speed in linear kinetic energy are 
replaced by moment of inertia and angular speed.
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Example 10.4
In a system consists of four small spheres as shown in the figure, assuming the radii are 
negligible and the rods connecting the particles are massless, compute the moment of 
inertia and the rotational kinetic energy when the system rotates about the y-axis at ω.

222222 200 MlmmMlMlrmI i
i

i =⋅+⋅++== ∑

Since the rotation is about y axis, the moment of 
inertia about y axis, Iy, is

( ) 22222 2
2
1

2
1

ωωω MlMlIK R ===Thus, the rotational kinetic energy is 

Find the moment of inertia and rotational kinetic energy when the system rotates on 
the x-y plane about the z-axis that goes through the origin O.

x

y

This is because the rotation is done about y axis, 
and the radii of the spheres are negligible.Why are some 0s?

M Ml l

m

m

b

b
O

( )2222222 2 mbMlmbmbMlMlrmI i
i

i +=+++== ∑ ( ) ( ) 2222222 22
2
1

2
1

ωωω mbMlmbMlIKR +=+==
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Calculation of Moments of Inertia
Moments of inertia for large objects can be computed, if we assume 
the object consists of small volume elements with mass, ∆mi.

It is sometimes easier to compute moments of inertia in terms of volume of the elements 
rather than their mass

Using the volume density, ρ, replace 
dm in the above equation with dV.

The moment of inertia for the large rigid object is ∫∑ =∆=
→∆

dmrmrI
i

iimi

22

0
lim

dVm
dV
dm

ρρ == d   ; The moments of 
inertia becomes ∫= dVrI 2ρ

Example 10.5: Find the moment of inertia of a uniform hoop of mass M and radius R 
about an axis perpendicular to the plane of the hoop and passing through its center.

x

y

RO

dm The moment 
of inertia is

222 MRdmRdmrI === ∫∫

What do you notice 
from this result?

The moment of inertia for this 
object is the same as that of a 
point of mass M at the distance R.
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Example 10.6
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis perpendicular to the rod and passing through its center of mass.

The line density of the rod is  

What is the moment of inertia 
when the rotational axis is at 
one end of the rod.

x

y

L
x
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L
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=λ

so the masslet is  dx
L
M

dxdm == λ
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==−=


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=== ∫∫

Will this be the same as the above.  
Why or why not?

Since the moment of inertia is resistance to motion, it makes perfect sense 
for it to be harder to move when it is rotating about the axis at one end.
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x

y
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xCM

(xCM,yCM)

y CM

CM

Parallel Axis Theorem
Moments of inertia for highly symmetric object is relatively easy if the 
rotational axis is the same as the axis of symmetry.  However if the axis of 
rotation does not coincide with axis of symmetry, the calculation can still be 
done in simple manner using parallel-axis theorem. 2MDII CM +=

y

x

r

Moment of inertia is defined ( ) (1)   222 ∫∫ +== dmyxdmrI

Since x and y are

x’

y’

'     ;' yyyxxx CMCM +=+=

One can substitute x and y in Eq. 1 to obtain

( ) ( )[ ]
( ) ( )dmyxdmyydmxxdmyx

dmyyxxI

CMCMCMCM

CMCM

∫∫∫∫
∫

+++++=

+++=

2222

22

'''2'2

''

Since the x’ and y’ are the 
distance from CM, by definition ∫

∫
=

=

0'

0'

dmy

dmx
D

Therefore, the parallel-axis theorem
2MDII CM +=

What does this 
theorem tell you?

Moment of inertia of any object about any arbitrary axis are the same as 
the sum of moment of inertia for a rotation about the CM and that of the 
CM about the rotation axis.
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Example 10.8
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis that goes through one end of the rod, using parallel-axis theorem.

The line density of the rod is  

Using the parallel axis theorem

L
M

=λ

so the masslet is  dx
L
M

dxdm == λ

The moment of 
inertia about 
the CM 

1243223

3
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2
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=

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
=



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












 −−






=





===

−
−∫∫

MDII CM
2+=

The result is the same as using the definition of moment of inertia.
Parallel-axis theorem is useful to compute moment of inertia of a rotation of a 
rigid object with complicated shape about an arbitrary axis

x

y

L
x

dxCM

3412212

22222 MLMLML
M

LML
=+=






+=
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Torque
Torque is the tendency of a force to rotate an object about some axis.  
Torque, τ, is a vector quantity.

FdrF =≡ φτ sinMagnitude of torque is defined as the product of the force 
exerted on the object to rotate it and the moment arm.

F
φ

d

Line of 
Action

Consider an object pivoting about the point P
by the force F being exerted at a distance r. 

P

r

Moment 
arm

The line that extends out of the tail of the force 
vector is called the line of action.
The perpendicular distance from the pivoting point 
P to the line of action is called Moment arm.

When there are more than one force being exerted on certain 
points of the object, one can sum up the torque generated by each 
force vectorially.  The convention for sign of the torque is positive if 
rotation is in counter-clockwise and negative if clockwise. 

d2

F2

22

21

dFFd −=

+=∑ τττ
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Torque & Angular Acceleration
Let’s consider a point object with mass m rotating in a circle.

What does this mean?

The tangential force Ft and radial force Fr

The tangential force Ft is

What do you see from the above relationship?

m
r

Ft

Fr

What forces do you see in this motion?

αmrmaF tt ==

The torque due to tangential force Ft is ατ 2mrrmarF tt ===

ατ I=
Torque acting on a particle is proportional to the angular acceleration.

What law do you see from this relationship? Analogs to Newton’s 2nd law of motion in rotation.

How about a rigid object?

r

dFt

dm

O

The external tangential force dFt is αdmrdmadF tt ==

αατ Idmr == ∫∑ 2

The torque due to tangential force Ft is
The total torque is

( )ατ dmrrdFd t
2==

What is the contribution due 
to radial force and why?

Contribution from radial force is 0, because its 
line of action passes through the pivoting 
point, making the moment arm 0.
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Example 10.10
A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is 
free to rotate about the pivot in the vertical plane.  The rod is released from rest in the 
horizontal position what is the initial angular acceleration of the rod and the initial linear 
acceleration of its right end?

The only force generating torque is the gravitational force Mg

ατ I
L

Mg
L

FFd ====
22

Using the relationship between tangential and 
angular acceleration

33

2

0

3

0

2

0

2 MLx
L
M

dxxdmrI
L

LL
=














=== ∫∫ λSince the moment of inertia of the rod 

when it rotates about one end is

L/2

Mg

We obtain 

L
g

ML
MgL

I
MgL

2
3

3
22 2 ===α

2
3g

Lat == α
What does this mean?

The tip of the rod falls faster than 
an object undergoing a free fall.
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Work, Power, and Energy in Rotation
Let’s consider a motion of a rigid body with a single external 
force F exerted on the point P, moving the object by ds.
The work done by the force F as the object rotates 
through infinitesimal distance ds=rdθ in a time dt is 

What is Fsinφ? The tangential component of force F.

( ) θφ rdFsdFdW sin=⋅=

Since the magnitude of torque is rFsinφ,

F
φ

O

rdθ
ds

What is the work done by 
radial component Fcosφ?

Zero, because it is perpendicular to the 
displacement.

θτddW =

The rate of work, or power becomes τω
θτ

===
dt
d

dt
dW

P
How was the power 
defined in linear motion?

The rotational work done by an external force 
equals the change in rotational energy. 














=






==∑ dt

d
d
d

I
dt
d

II
θ

θ
ωω

ατ

The work put in by the external force then
22

2
1

2
1

fi IIdIdW

dIddW

f ωωωωθτ

ωωθτ
ω

ω

θ

θ ι

ι

ι

−===

==

∫∑ ∫ ∑
∑
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Similarity Between Linear and Rotational Motions
All physical quantities in linear and rotational motions show striking similarity.

Momentum
RotationalKineticKinetic Energy

Power
WorkWorkWork
TorqueForceForce

Acceleration
Speed

Angle     (Radian)DistanceLength of motion

Moment of InertiaMassMass
RotationalLinearSimilar Quantity

∫= dmrI 2

dt
dr

v =
dt

d θ
ω =

dt
dv

a =
dt

d ω
α =

maF = ατ I=
∫= f

i

x

x
FdxW

vFP ⋅= τω=P

2

2
1

mvK = 2

2
1

ωIK R =

L

M

θ

∫= f

i

dW
θ

θ
θτ

vmp = ωIL =
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Rolling Motion of a Rigid Body
What is a rolling motion?

To simplify the discussion, let’s 
make a few assumptions

Let’s consider a cylinder rolling without slipping on a flat surface

A more generalized case of a motion where the 
rotational axis moves together with the object

Under what condition does this “Pure Rolling” happen?

The total linear distance the CM of the cylinder moved is

Thus the linear 
speed of the CM is

A rotational motion about the moving axis

1. Limit our discussion on very symmetric 
objects, such as cylinders, spheres, etc

2. The object rolls on a flat surface

R θ s

s=Rθ

θRs=

ω
θ

R
dt
d

R
dt
ds

vCM ===

Condition for “Pure Rolling”
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Total Kinetic Energy of a Rolling Body

Where, IP, is the moment of 
inertia about the point P.

Since it is a rotational motion about the point 
P, we can writ the total kinetic energy

Since vCM=Rω, the above 
relationship can be rewritten as

2

2
1

ωPIK =

What do you think the total kinetic 
energy of the rolling cylinder is?

P

P’

CM
vCM

2vCM

Using the parallel axis theorem, we can rewrite

2222

2
1

2
1

2
1

ωωω MRIIK CMP +==

22

2
1

2
1

CMCM MvIK += ω

What does this equation mean? Rotational kinetic 
energy about the CM

Translational Kinetic 
energy of the CM

Total kinetic energy of a rolling motion is the sum 
of the rotational kinetic energy about the CM And the translational

kinetic of the CM
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Example 11.1
For solid sphere as shown in the figure, calculate the linear speed of the CM at the 
bottom of the hill and the magnitude of linear acceleration of the CM.

22

5
2

MRdmrICM == ∫

The moment of inertia the 
sphere with respect to the CM!!

Since h=xsinθ, 
one obtains

Thus using the formula in the previous slide

What must we know first?R

xh

θ
vCM

ω

gh
gh

MRI
gh

v
CM

CM 7
10

5/21
2

/1
2

2 =
+

=
+

=

θsin
7

102 gxvCM = Using kinematic
relationship

xav CMCM 22 =

The linear acceleration 
of the CM is θsin

7
5

2

2

g
x

v
a CM

CM ==
What do you see?

Linear acceleration of a sphere does 
not depend on anything but g and θ.
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x

y

z

O

Torque and Vector Product

The magnitude of torque given to the disk by the force F is

Let’s consider a disk fixed onto the origin O and 
the force F exerts on the point p. What happens?

φτ sinFr=

θsinBABAC

BAC

=×=

×≡

The disk will start rotating counter clockwise about the Z axis

The above quantity is called 
Vector product or Cross product

Fθ

τ=rxF

r p

But torque is a vector quantity, what is the direction? 
How is torque expressed mathematically? Fr ×≡τ
What is the direction? The direction of the torque follows the right-hand rule!!

What is the result of a vector product?
Another vector

What is another vector operation we’ve learned?

Scalar product θcosBABAC =⋅≡

Result? A scalar
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Angular Momentum of a Particle
If you grab onto a pole while running, your body will rotate about the pole, gaining 
angular momentum.   We’ve used linear momentum to solve physical problems 
with linear motions, angular momentum will do the same for rotational motions.

φsinmvrL =

x

y

z

O

pφ

L=rxp

r m

Let’s consider a point-like object ( particle) with mass m located 
at the vector location r and moving with linear velocity v

prL ×≡
The instantaneous angular momentum 
L of this particle relative to origin O is 

What do you learn from this? If the direction of linear velocity points to the origin of 
rotation, the particle does not have any angular momentum.

What is the unit and dimension of angular momentum? 22 /smkg⋅

Note that L depends on origin O. Why? Because r changes

The direction of L is +zWhat else do you learn? 
Since p is mv, the magnitude of L becomes

If the linear velocity is perpendicular to position vector, the 
particle moves exactly the same way as a point on a rim.

The point O has 
to be inertial.
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Angular Momentum and Torque

Total external forces exerting on a particle is the same as the change of its linear momentum.

Can you remember how net force exerting on a particle 
and the change of its linear momentum are related?

dt
pd

rFr ×=×= ∑∑ τ

Thus the torque-angular 
momentum relationship

The same analogy works in rotational motion between torque and angular momentum. 

Net torque acting on a particle is 

The net torque acting on a particle is the same as the time rate change of its angular momentum

dt
pd

F =∑

( )
dt

pd
r

dt
pd

rp
dt

rd
dt

prd
dt

Ld
×+=×+×=

×
= 0

dt
Ld

=∑ τ
x

y

z

O

pφ

L=rxp

r m Why does this work? Because v is parallel to 
the linear momentum
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Example 11.4
A particle of mass m is moving in the xy plane in a circular path of radius r and linear 
velocity v about the origin O.  Find the magnitude and direction of angular momentum 
with respect to O.

r

x

y v

O

vrmvmrprL ×=×=×=
Using the definition of angular momentum

Since both the vectors, r and v, are on x-y plane and 
using right-hand rule, the direction of the angular 
momentum vector is +z (coming out of the screen)

The magnitude of the angular momentum is mrvmrvmrvvrmL ===×= o90sinsin φ

So the angular momentum vector can be expressed as kmrvL =

Find the angular momentum in terms of angular velocity ω.

ωωω ImrkmrkmrvL ==== 22

Using the relationship between linear and angular speed 
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Example 11.6
A rigid rod of mass M and length l pivoted without friction at its center.  Two particles of mass 
m1 and m2 are connected to its ends.  The combination rotates in a vertical plane with an 
angular speed of ω. Find an expression for the magnitude of the angular momentum.







 ++=

++=++=

21

2

2
2

2
1

2

3
1

4

4
1

4
1

12
1

21

mmM
l

lmlmMlIIII mmrod

The moment of inertia of this system is

( ) ( )
lg

mmM

mm

mmM
l

glmm

I
ext /

3
1

cos2

3
1

4

cos
2
1

21

11

21

2

11







 ++

−
=







 ++

−
== ∑ θθτ

α

First compute net 
external torque

 cos
2

  ;cos
2 221 θτθτ

l
gm

l
gm −==1

m1 g

x

y

O

l

m1

m2

θ m2 g

If m1 = m2, no angular 
momentum because net 
torque is 0. 
If θ=+/−π/2, at equilibrium 
so no angular momentum.







 ++== 21

2

3
1

4
mmM

l
IL

ω
ω

Find an expression for the magnitude of the angular acceleration of the 
system when the rod makes an angle θ with the horizon.

( )
2

cos 21
2

mmgl
ext

−
=+= 1

θ
τττ

Thus α 
becomes
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Example 11.8
A start rotates with a period of 30days about an axis through its center.  After the star 

undergoes a supernova explosion, the stellar core, which had a radius of 1.0x104km, collapses 
into a neutron start of radius 3.0km.  Determine the period of rotation of the neutron star.  

T
π

ω
2

=

What is your guess about the answer? The period will be significantly shorter, 
because its radius got smaller.

ffi

fi

II

LL

ωω ι =

=

Let’s make some assumptions: 1. There is no torque acting on it
2. The shape remains spherical
3. Its mass remains constant

The angular speed of the star with the period T is

Using angular momentum 
conservation

Thus

sdaysdaysT
r

r
T

Tmr
mr

I
I

i
i

f

f
f

if

i

f

i
f

23.0107.230
100.1
0.32

2

6
2

42

2

2

2

=×=×







×
=










==

==

−

ω
π

πω
ω ι
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Conditions for Equilibrium
What do you think does the term “An object is at its equilibrium” mean?

∑ = 0F

The object is either at rest (Static Equilibrium) or its center of mass 
is moving with a constant velocity (Dynamic Equilibrium). 

Is this it?   

When do you think an object is at its equilibrium?

Translational Equilibrium: Equilibrium in linear motion 

The above condition is sufficient for a point-like particle to be at its static 
equilibrium.   However for object with size this is not sufficient.   One more 
condition is needed.  What is it? 

Let’s consider two forces equal magnitude but opposite direction acting 
on a rigid object as shown in the figure.   What do you think will happen?

CM
d

d

F

-F

The object will rotate about the CM. The net torque 
acting on the object about any axis must be 0. 

For an object to be at its static equilibrium, the object should not 
have linear or angular speed. 

∑ = 0τ

0=CMv 0=ω
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More on Conditions for Equilibrium
To simplify the problems, we will only deal with forces acting on x-y plane, giving torque 
only along z-axis.   What do you think the conditions for equilibrium be in this case? 

The six possible equations from the two vector equations turns to three equations.

What happens if there are many forces exerting on the object?

Net torque about O

∑ = 0F ∑ = 0τ

∑
∑

=

=

0

0

y

x

F

F ∑ = 0zτ

O

F
1

F
4

F3

F 2

F5

r5 O’
r’

If an object is at its translational static equilibrium, and if the 
net torque acting on the object is 0 about one axis, the net 
torque must be 0 about any arbitrary axis.

∑ =⋅⋅⋅+++= 0321 FFFF

∑ ∑ =×=⋅⋅⋅+×+×+×= 0332211 iiO FrFrFrFrτ

Net Force exerting on the object

'
'

rrr ii −=Position of force Fi about O’

Net torque about O’ ( ) ( )∑ ∑ ∑×−×=⋅⋅⋅+×−+×−=⋅⋅⋅+×+×= iiiO FrFrFrrFrrFrFr ''''' 22112211'τ

∑ ∑∑ ==×−×= 00'' OiiO rFr ττ



Apr. 8, 2002 1443-501 Spring 2002
Dr. J. Yu, Lecture #19

35

Example 12.1
A uniform 40.0 N board supports a father and daughter weighing 800 N and 350 N, 
respectively.   If the support (or fulcrum) is under the center of gravity of the board and 
the father is 1.00 m from CoG, what is the magnitude of normal force n exerted on the 
board by the support?

0

0

=−++=

=

∑
∑

ngMgMgMF

F

DFBy

x

Since there is no linear motion, this system 
is in its translational equilibriumF D

n

MBgMFg MFg

1m x

Therefore the magnitude of the normal force Nn 11903508000.40 =++=
Determine where the child should sit to balance the system.

The net torque about the fulcrum 
by the three forces are 

000.10 =⋅−⋅+⋅= xgMgMgM DFBτ

Therefore to balance the system 
the daughter must sit

mmm
gM
gM

x
D

F 29.200.1
350
800

00.1 =⋅=⋅=
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Example 12.1 Continued
Determine the position of the child to balance the 
system for different position of axis of rotation.

Since the normal force is 

The net torque about the axis of 
rotation by all the forces are 

( ) 02/2/2/00.12/ =⋅−⋅−+⋅+⋅= xgMxnxgMxgM DFBτ

Therefore mmm
gM
gM

x
D

F 29.200.1
350
800

00.1 =⋅=⋅=

gMgMgMn DFB ++=

The net torque can 
be rewritten 

( )
( )

000.1
2/2/

2/00.12/

=⋅−⋅=
⋅−⋅++−

+⋅+⋅=

xgMgM
xgMxgMgMgM

xgMxgM

DF

DDFB

FBτ

What do we learn?

No matter where the 
rotation axis is, net effect of 
the torque is identical.

F D
n

MBgMFg MFg

1m x

x/2

Rotational axis
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Example 12.3
A uniform horizontal beam with a length of 8.00m and a weight of 200N is attached to a wall 
by a pin connection.  Its far end is supported by a cable that makes an angle of 53.0o with the 
horizontal.  If 600N person stands 2.00m from the wall, find the tension in the cable, as well as 
the magnitude and direction of the force exerted by the wall on the beam.

02006000.53sinsin

00.53coscos

=−−+=

=−=

∑
∑

NNTRF

TRF

y

x

o

o

θ

θ

From the rotational equilibrium

Using the 
translational 
equilibrium 

8m

53.0o

2m
FBD

R T

600Ν 200Ν

53.0oθ

Tsin53
Tcos53

Rsinθ

Rcosθ

First the translational equilibrium, 
using components

NT

mNNT

313

000.420000.260000.80.53sin

=

=⋅−×−×=∑ oτ

o
o

o

o

o

7.71
0.53cos313

0.53sin313800
tan

2006000.53sinsin

0.53coscos

1 =






 ×−
=

++−=

=

−θ

θ

θ

NNTR

TR And the magnitude of R is 

N
T

R 582
1.71cos

0.53cos313
cos

0.53cos
=

×
== o

oo

θ
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Example 12.4
A uniform ladder of length l and weight mg=50 N rests against a smooth, vertical wall.  If 
the coefficient of static friction between the ladder and the ground is µs=0.40, find the 
minimum angle θmin at which the ladder does not slip.

0

0

=+−=

=−=

∑
∑

nmgF

PfF

y

x

θ

l FBD

First the translational equilibrium, 
using components

Thus, the normal force is 

o51
40
50

tan
2

tan

0sincos
2

11
min

minmin

=





=






=

=+−=

−−

∑

N
N

P
mg

Pl
l

mgO

θ

θθτ

mg

P

f

n
O

Nmgn 50==
The maximum static friction force 
just before slipping is, therefore, PNNnf ss ==×== 20504.0max µ

From the rotational equilibrium
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Example 12.7
A solid brass sphere is initially under normal atmospheric pressure of 1.0x105N/m2.  The 
sphere is lowered into the ocean to a depth at which the pressures is 2.0x107N/m2.  The 
volume of the sphere in air is 0.5m3.  By how much its volume change once the sphere is 
submerged?

The pressure change ∆P is

Since bulk modulus is

iV
V

P
∆

∆
−=B

The amount of volume change is
B

iPV
V

∆
−=∆

From table 12.1, bulk modulus of brass is 6.1x1010 N/m2

757 100.2100.1100.2 ×≈×−×=−=∆ if PPP

Therefore the resulting 
volume change ∆V is

34
10

7

106.1
106.1

5.0100.2
mVVV if

−×−=
×

××
−=−=∆

The volume has decreased.


