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Lecture #21
Dr. Jaehoon Yu

1. Kepler’s Laws
2. The Law of Gravity & The Motion of Planets
3. The Gravitational Field
4. Gravitational Potential Energy
5. Energy in Planetary and Satellite Motions

Today’s Homework Assignment would have been #10 but I will 
assign next Monday.
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Example 14.3
Using the fact that g=9.80m/s2 at the Earth’s surface, find the average density of the Earth.
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Kepler’s Laws & Ellipse

Kepler lived in Germany and discovered the law’s governing planets’ 
movement some 70 years before Newton, by analyzing data.

Newton’s laws explain the cause of the above laws. Kepler’s third law is 
the direct consequence of law of gravitation being inverse square law.

•All planets move in elliptical orbits with the Sun at one focal point.
•The radius vector drawn from the Sun to a planet sweeps out equal 
area in equal time intervals. (Angular momentum conservation)
•The square of the orbital period of any planet is proportional to the 
cube of the semi-major axis of the elliptical orbit.

F1 F2

b

c

a
Ellipses have two different axis, major (long) and 
minor (short) axis, and two focal points, F1 & F2

a is the length of a semi-major axis
b is the length of a semi-minor axis
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The Law of Gravity and the Motion of Planets
•Newton assumed that the law of gravitation applies the same 
whether it is on the Moon or the apple on the surface of the Earth.
•The interacting bodies are assumed to be point like particles.

Therefore the centripetal acceleration of the Moon, aM, is

Newton predicted that the ratio of the Moon’s 
acceleration aM to the apple’s acceleration g would be 
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Newton also calculated the Moon’s orbital acceleration aM from the knowledge of its distance 
from the Earth and its orbital period, T=27.32 days=2.36x106s
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This means that the Moon’s distance is about 60 times that of the Earth’s radius, its acceleration 
is reduced by the square of the ratio.   This proves that the inverse square law is valid. 
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Kepler’s Third Law
It is crucial to show that Keper’s third law can be predicted from the 
inverse square law for circular orbits.

Since the orbital speed, v, of the planet with period T is

Since the gravitational force exerted by the Sun is radially
directed toward the Sun to keep the planet circle, we can 
apply Newton’s second law
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The above can be written

This is Keper’s third law.  It’s also valid for ellipse for r being the length of the 
semi-major axis.  The constant Ks is independent of mass of the planet. 
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Solving for T 
one can obtain 
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Example 14.4
Calculate the mass of the Sun using the fact that the period of the Earth’s orbit around 
the Sun is 3.16x107s and its distance from the Sun is 1.496x1011m.

Using Kepler’s third law.

The mass of the Sun, Ms, is
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Kepler’s Second Law and Angular Momentum Conservation

Since the gravitational force acting on the planet is 
always toward radial direction, it is a central force

Consider a planet of mass Mp moving around the Sun in an elliptical orbit.

0ˆ =×=×= rFrFrτ

Because the gravitational force exerted on a 
planet by the Sun results in no torque, the 
angular momentum L of the planet is constant. 

This is Keper’s second law which states that the radius vector from the Sun 
to a planet sweeps our equal areas in equal time intervals. 
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The Gravitational Field
The force exists every point in the space.The gravitational force is a field force.

If one were to place a test object of mass m at a any point in the 
space in the existence of another object of mass M, the test object 
will fill the gravitational force,                  , exerted by MgmF g =

In other words, the gravitational field at a point in space is the gravitational force 
experienced by a test particle placed at the point divided by the mass of the test particle.

Therefore the gravitational field g is defined as 
m

F
g g≡

So how does the Earth’s 
gravitational field look like?
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Where      is the unit vector pointing 
outward from the center of the Earth

r̂

E
Far away from the 
Earth’s surface

Close to the 
Earth’s surface
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The Gravitational Potential Energy
What is the potential energy of an object at the 
height y from the surface of the Earth?

No, it would not. 

Because gravitational force is a central force and a 
central force is a conservative force, the work done by 
the gravitational force is independent of the path.

The path can be looked at as consisting of 
many tangential and radial motions. 

mgyU =
Do you think this would work in general cases?

Why not? Because this formula is only valid for the case where the gravitational force 
is constant, near the surface of the Earth and the generalized gravitational 
force is inversely proportional to the square of the distance.

OK. Then how would we generalize the potential energy in the gravitational field?
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More on The Gravitational Potential Energy
Since the gravitational force is a radial force, it only performed work while the 
path was radial direction only. Therefore, the work performed by the gravitational 
force that depends on the position becomes

Therefore the potential energy is the 
negative change of work in the path
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Example 14.6
A particle of mass m is displaced through a small vertical distance ∆y near the Earth’s 
surface.  Show that in this situation the general expression for the change in gravitational 
potential energy is reduced to the ∆U=mg∆y.

Taking the general expression of 
gravitational potential energy

The above 
formula becomes
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the surface of the Earth
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Energy in Planetary and Satellite Motions
Consider an object of mass m moving at a speed 
v near a massive object of mass M (M>>m).
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Systems like Sun and Earth or Earth and Moon whose motions 
are contained within a closed orbit is called Bound Systems.
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For a system to be bound, the total energy must be negative.
Assuming a circular orbit, in order for the object to be kept in
the orbit the gravitational force must provide the radial 
acceleration.  Therefore from Newton’s second law of motion
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Therefore the total 
mechanical energy 
of the system is r
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2
−=+=

Since the gravitational 
force is conservative, the 
total mechanical energy of 
the system is conserved.
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Example 14.7
The space shuttle releases a 470kg communication satellite while in an orbit that is 
280km above the surface of the Earth.  A rocket engine on the satellite boosts it into a 
geosynchronous orbit, which is an orbit in which the satellite stays directly over a single 
location on the Earth,  How much energy did the engine have to provide?

What is the radius of the geosynchronous orbit?

From Kepler’s 3rd law
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Therefore the 
geosynchronous radius is

Because the initial position 
before the boost is 280km
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The total energy needed to 
boost the satellite at the 
geosynchronous radius is the 
difference of the total energy 
before and after the boost 
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Escape Speed
Consider an object of mass m is projected vertically from the surface of 
the Earth with an initial speed vi and eventually comes to stop vf=0 at 
the distance rmax.
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Solving the above equation 
for vi, one obtains

Therefore if the initial speed vi is known one can use 
this formula to compute the final height h of the object.

Because the total 
energy is conserved

In order for the object to escape 
Earth’s gravitational field completely, 
the initial speed needs to be
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This is called the escape speed.  This formula is 
valid for any planet or large mass objects. 

How does this depend 
on the mass of the 
escaping object?

Independent of 
the mass of the 
escaping object


