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2-dim Motion Under Constant Acceleration

• Position vectors in xy plane: jyixr iii += jyixr fff +=

• Velocity vectors in xy plane: jvivv yixii += jvivv yfxff +=
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• How are the position vectors written in acceleration vectors?
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Example 2.12
A stone was thrown straight upward at t=0 with +20.0m/s initial velocity on the roof 

of a 50.0m high building,
1. Find the time the stone reaches at maximum height (v=0)
2. Find the maximum height
3. Find the time the stone reaches its original height
4. Find the velocity of the stone when it reaches its original height
5. Find the velocity and position of the stone at t=5.00s
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Uniform Circular Motion
• A motion with a constant speed on a circular path.

– The velocity of the object changes, because the direction 
changes

– Therefore, there is an acceleration
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The acceleration pulls the object inward: Centripetal Acceleration
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Is this correct  in 
dimension?

What story is this expression  telling you?
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Relative Velocity and Acceleration
The velocity and acceleration in two different frames of 
references can be denoted:

O
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What does this tell you?

The accelerations measured in two frames are the 
same when the frames move at a constant velocity 
with respect to each other!!!

The earth’s gravitational acceleration is the same in 
a frame moving at a constant velocity wrt the earth.
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Example 4.9
A boat heading due north with a speed 10.0km/h is crossing the river whose 
stream has a uniform speed of 5.00km/h due east. Determine the velocity of 
the boat seen by the observer on the bank. 
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Newton’s Laws
In the absence of external forces, an object at rest 
remains at rest and an object in motion continues 
in motion with a constant velocity. 

The acceleration of an object is directly proportional to 
the net force exerted on it and inversely proportional to 
the object’s mass. 

amF
i

i =∑

If two objects interact, the force, F12, exerted on object 1 
by object 2 is equal magnitude to and opposite direction 
to the force, F21, exerted on object 1 by object 2. 

1221 FF −=

1st Law: 
Law of Inertia

2nd Law: 
Law of Forces

3rd Law: 
Law of Action 
and Reaction
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Applications of Newton’s Laws

M

Suppose you are pulling a box on frictionless ice, using a rope.

T

What are the forces being 
exerted on the box?

Gravitational force: Fg

Normal force: n

Tension force: T

n= -Fg

T
Free-body 
diagram

Fg=Mg
Total force: 
F=Fg+n+T=T 0   ;0
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Example 5.4
A traffic light weighing 125 N hangs from a cable tied to two other cables 
fastened to a support.  The upper cables make angles of 37.0o and 53.0o 

with the horizontal.  Find the tension in the three cables.  

( ) ( )
( ) ( )

( )
( )

( ) ( )[ ]
NTTNT

NTT

TTT

TT

mgTT

TFTFTTTF
i

i
iyy

i

i
ixx

4.75754.0   ;100
12525.137sin754.053sin

   754.0
37cos
53cos

053cos37cos

053sin37sin

0   ;0   ;

212

22

221

21

21

3

1

3

1
321

===
==×+

==∴

=+−

=−+

====++= ∑∑
=

=

=

=

oo

o

o

oo

oo

Free-body
Diagram

53o37o

T1 T2

T3

53o37o

x

y



May. 1, 2002 1443-501 Spring 2002
Dr. J. Yu, Lecture #24

10

Example 5.12
Suppose a block is placed on a rough surface inclined relative to the horizontal.  The 
inclination angle is increased till the block starts to move.  Show that by measuring 
this critical angle, θc, one can determine coefficient of static friction, µs.
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Example 6.8
A ball of mass m is attached to the end of a cord of length R.  The ball is moving in a 
vertical circle.   Determine the tension of the cord at any instant when the speed of 
the ball is v and the cord makes an angle θ with vertical. 

What are the forces involved in this motion?









+=

==−=

=

==

∑

∑

θ

θ

θ

θ

cos

cos

sin

sin

2

2

g
R
v

mT

R
v

mmamgTF

ga

mgmaF

rr

t

tt

The gravitational force Fg and the 
radial force, T, providing tension. T

m

θ
R Fg=mg

At what angles the tension becomes maximum and minimum.  What are the tension?
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Example 6.11
A small ball of mass 2.00g is released from rest in a large vessel filled with oil, 
where it experiences a resistive force proportional to its speed.  The ball reaches a 
terminal speed of 5.00 cm/s.  Determine the time constant τ and the time it takes the 
ball to reach 90% of its terminal speed. 
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Determine the 
time constant τ. 

Determine the time it takes 
the ball to reach 90% of its 
terminal speed. 
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Work and Kinetic Energy
Work in physics is done only when a sum of  forces 
exerted on an object made a motion to the object.
What does this mean? However much tired your arms feel, if you were 

just holding an object without moving it you have 
not done any physical work.

Mathematically, work is written in scalar product 
of force vector and the displacement vector 

Kinetic Energy is the energy associated with motion and 
capacity to perform work.   Work requires change of energy 
after the completionçWork-Kinetic energy theorem

Units of these quantities????

Power is the rate of which work is performed.

θcosFddFW i∑ =⋅=
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mvK =
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dt
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KKKW if ∆=−=∑

N.m=Joule

Nm/s=Joule/s=Watt
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Example 7.14
A compact car has a mass of 800kg, and its efficiency is rated at 18%.  Find the amount of 
gasoline used to accelerate the car from rest to 27m/s (~60mi/h).  Use the fact that the 
energy equivalent of 1gal of gasoline is 1.3x108J.

( ) JmvK f
522 109.227800

2
1

2
1

×=××==

Then using the fact that 1gal of gasoline can putout 1.3x108J, we can compute the 
total volume of gasoline needed to accelerate the car to 60 mi/h.

First let’s compute what the kinetic energy needed 
to accelerate the car from rest to a speed v.

Since the engine is only 18% efficient we must 
divide the necessary kinetic energy with this 
efficiency in order to figure out what the total 
energy needed is.
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Potential Energy
Energy associated with a system of objects è
Stored energy which has Potential or possibility 
to work or to convert to kinetic energy

What does this mean? In order to describe potential energy, U,
a system must be defined.

What other forms of energies in the universe?

The concept of potential energy can only be used under the special class of forces called, 
conservative forces which results in principle of conservation of mechanical energy.

Mechanical Energy Biological Energy

Electromagnetic Energy Nuclear Energy

Chemical Energy
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Gravitational Potential

When an object is falling, gravitational force, Mg, performs work on the 
object, increasing its kinetic energy.  The potential energy of an object at a 
height y which is the potential to work is expressed as

Potential energy given to an object by gravitational field 
in the system of Earth due to its height from the surface

m

yf

m
mgyi ( ) ( ) mgyjyjmgyFU gg =−⋅−=⋅=

What does 
this mean?

gfi

fig

Umgymgy

UUW

∆−=−=

−=Work performed on the object 
by the gravitational force as the 
brick goes from yi to yf is:

Work by the gravitational force as the brick 
goes from yi to yf is negative of the change in 
the system’s potential energy

mgyU g ≡
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Example 8.1
A bowler drops bowling ball of mass 7kg on his toe.  Choosing floor level as y=0, estimate the 
total work done on the ball by the gravitational force as the ball falls.   

( ) JJUUU

JmgyU

JmgyU

if

ff

ii

3024.32

06.203.08.97

3.345.08.97

≅=−−=∆

=××==
=××==

b) Perform the same calculation using the top of the bowler’s head as the origin.

Assuming the bowler’s height is 1.8m, the ball’s original position is –1.3m, and the toe is at –1.77m.

M

Let’s assume the top of the toe is 0.03m from the floor and the hand 
was 0.5m above the floor.

What has to change?

( )
( )

( ) JJUUU

JmgyU

JmgyU

if

ff

ii

302.32

4.12177.18.97

2.893.18.97

≅=−−=∆

−=−××==
−=−××==

First we must re-compute the positions of ball at the hand and of the toe. 
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Elastic Potential Energy

The force spring exerts on an object when it is 
distorted from its equilibrium by a distance x is

Potential energy given to an object by a spring or an object with elasticity 
in the system consists of the object and the spring without friction.

kxFs −=

What do you see from 
the above equations?

22

2
1

2
1

fis kxkxW −=The work performed on the 
object by the spring is

The work done on the object by the spring 
depends only on the initial and final 
position of the distorted spring.

Where else did you see this trend?

The potential energy of this system is 2

2
1

kxU s ≡

The gravitational potential energy, Ug
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Conservative and Non-conservative Forces

When directly falls, the work done on the object is

The work done on an object by the gravitational 
force does not depend on the object’s path.

mghWg =

How about if we lengthen the incline by a 
factor of 2, keeping the height the same??

( ) mghlmg

lmglFW inclinegg

==

×=×= −

θ

θ

sin

sin

Still the same 
amount of work☺

The forces like gravitational 
or elastic forces are called 
conservative forces

So the work done by the gravitational force on an object is independent on the path of 
the object’s movements.  It only depends on the difference of the object’s initial and 
final position in the direction of the force.

mghWg =

1. If the work performed by the force does not depend on the path
2. If the work performed on a closed path is 0.

h l

m

θmg
When sliding down the hill 
of length l, the work is
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Conservation of Mechanical Energy
Total mechanical energy is the sum of kinetic and potential energies

mghU g =

Let’s consider a brick 
of mass m at a height 
h from the ground

∫−=−=∆ f

i

x

x xif dxFUUU

The brick gains speed gtv =

The lost potential energy is converted to kinetic energy

What does 
this mean?

The total mechanical energy of a system remains 
constant in any isolated system of objects that 
interacts only through conservative forces: 
Principle of mechanical energy conservation

m
mgh

What is its potential energy?

What happens to the energy as 
the brick falls to the ground?m

h1

By how much?

So what? The brick’s kinetic energy increased 222

2
1

2
1

tmgmvK ==

And?

UKE +≡

∑∑ +=+

=

ffii

fi

UKUK

EE
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Example 8.3
A ball of mass m is attached to a light cord of length L, making up a pendulum. The ball is 
released from rest when the cord makes an angle θA with the vertical, and the pivoting point 
P is frictionless.  Find the speed of the ball when it is at the lowest point, B.

( )Ai

A

mgLU
LLh

θ
θ
cos1

cos
−=

−=

b) Determine tension T at the point B.

Using the principle of 
mechanical energy 
conservation

( )

( )A

A

rr

mgT

L
gL

gm
L
v

gmT

L
v

mmgTmaF

θ

θ

cos23

cos122

2

−=∴







 −

+=







+=

=−==Recall the centripetal 
acceleration of a 
circular motion  

Cross check the result in 
a simple situation. What 
happens when the initial 
angle θA is 0?

( )

( )
( )A

A

A

ffii

gLv

gLv

mvmgLmgh

UKUK

θ

θ

θ

cos12

cos12
2
1

cos1

2

2

−=∴

−=

=−=

+=+

Compute the potential energy 
at the maximum height, h.  
Remember where the 0 is.

mgm
m

θA

L

T

B

mgT =

h{



May. 1, 2002 1443-501 Spring 2002
Dr. J. Yu, Lecture #24

22

Linear Momentum
The principle of energy conservation can be used to solve 
problems that are harder to solve just using Newton’s laws.   It is 
used to describe motion of an object or a system of objects.
A new concept of linear momentum can also be used to solve physical 
problems, especially the problems involving collisions of objects.

vmp ≡
Linear momentum of an object whose mass is m 
and is moving at a velocity v is defined as 

1. Momentum is a vector quantity.
2. The heavier the object the higher the momentum
3. The higher the velocity the higher the momentum
4. Its unit is kg.m/s 

What can you tell from this 
definition about momentum?

What else can use see from the 
definition?  Do you see force?

The change of momentum in a given time interval

( )
dt

vd
mvm

dt
d

dt
pd

== Fam ==
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Linear Momentum and Forces
What can we learn from this 
Force-momentum relationship?

Something else we can do 
with this relationship.  What 
do you think it is?

( )vm
dt
d

dt
pd

F ==

The relationship can be used to study 
the case where the mass changes as a 
function of time.

Can you think of a 
few cases like this?

Motion of a meteorite Trajectory a satellite 

• The rate of the change of particle’s momentum is the same as the
net force exerted on it.

• When net force is 0, the particle’s linear momentum is constant.
• If a particle is isolated, the particle experiences no net force, 

therefore its momentum does not change and is conserved.
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Conservation of Linear Momentum in a Two 
Particle System

Consider a system with two particles that does not have any external 
forces exerted on it.    What is the impact of Newton’s 3rd Law?

Now how would the momenta
of these particles look like?

If particle#1 exerts force on particle #2, there must be another force that 
the particle #2 exerts on #1 as the reaction force.   Both the forces are 
internal forces and the net force in the SYSTEM is still 0. 

Let say that the particle #1 has momentum 
p1 and #2 has p2 at some point of time.

Using momentum-
force relationship dt

pd
F

dt
pd

F 2
12

1
21  and  ==

And since net force 
of this system is 0

constpp =+ 12
Therefore

( ) 012
12

2112 =+=+=+=∑ pp
dt
d

dt
pd

dt
pd

FFF

The total linear momentum of the system is conserved!!!
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Example 9.5
A car of mass 1800kg stopped  at a traffic light is rear-ended by a 900kg car, and 
the two become entangled.  If the lighter car was moving at 20.0m/s before the 
collision what is the velocity of the entangled cars after the collision?

( ) ffff

iiii

vmmvmvmp

vmvmvmp

212211

222211

+=+=

=+=

The momenta before and after the collision are

What can we learn from these equations 
on the direction and magnitude of the 
velocity before and after the collision?

m1

20.0m/s

m2

vf
m1

m2

Since momentum of the system must be conserved

( )

( ) smi
i

mm
vm

v

vmvmm

pp

i
f

if

fi

/ 67.6
1800900

0.20900

21

22

2221

=
+
×

=
+

=

=+

=

The cars are moving in the same direction as the lighter 
car’s original direction to conserve momentum. 
The magnitude is inversely proportional to its own mass.

Before collision

After collision
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Elastic and Inelastic Collisions 

Collisions are classified as elastic or inelastic by the conservation of kinetic 
energy before and after the collisions.

A collision in which the total kinetic energy is the same 
before and after the collision.  

Momentum is conserved in any collisions as long as external forces negligible.

Elastic 
Collision

Two types of inelastic collisions:Perfectly inelastic and inelastic  

Perfectly Inelastic: Two objects stick together after the 
collision moving at a certain velocity together.

Inelastic: Colliding objects do not stick together after the collision 
but some kinetic energy is lost.

Inelastic 
Collision

A collision in which the total kinetic energy is not the same 
before and after the collision.  

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.  
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Elastic and Perfectly Inelastic Collisions 
In perfectly Inelastic collisions, the objects stick 
together after the collision, moving together.  
Momentum is conserved in this collision, so the 
final velocity of the stuck system is

How about elastic collisions?
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)(
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fii
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In elastic collisions, both the 
momentum and the kinetic energy 
are conserved. Therefore, the final 
speeds in an elastic collision can 
be obtained in terms of initial 
speeds as 

2
22

2
11

2
22

2
11

22112211

2
1

2
1

2
1

2
1

ffii

ffii

vmvmvmvm

vmvmvmvm

+=+

+=+

( ) ( )
( )( ) ( )( )fifififi

fifi

vvvvmvvvvm

vvmvvm

2222211111

2
2

2
22

2
1

2
11

+−=+−

−=−

( ) ( )fifi vvmvvm 222111

:onconservati momentum dim-1 From

−=−

iifiif v
mm
mm

v
mm

m
vv

mm
m

v
mm
mm

v 2
21

21
1

21

1
22

21

2
1

21

21
1

2
   ;

2








+
−

+







+

=







+

+







+
−

=



May. 1, 2002 1443-501 Spring 2002
Dr. J. Yu, Lecture #24

28

Example 9.9
Proton #1 with a speed 3.50x105 m/s collides elastically with proton #2 initially at 
rest.  After the collision, proton #1 moves at an angle of 37o to the horizontal axis 
and proton #2 deflects at an angle φ to the same axis.  Find the final speeds of the 
two protons and the scattering angle of proton #2, φ.

Since both the particles are protons m1=m2=mp.
Using momentum conservation, one obtainsm2

m1

v1i

m 1

v 1f

θ

m
2

v2f

φ

0sinsin

coscos

21

211

=−

+=

φθ

φθ

fpfp

fpfpip

vmvm

vmvmvm

Canceling mp and put in all known quantities, one obtains

o0.53

/1011.2

/1080.2
5

2

5
1

=

×=

×=

φ

smv

smv

f

f

From kinetic energy 
conservation:

( ) (3)    1050.3 2
2

2
1

25
ff vv +=×

Solving Eqs. 1-3 
equations, one gets

(2)    sin37sin

(1)   1050.3cos37cos

21

5
21

φ

φ

ff

ff

vv

vv

=

×=+
o

o
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Center of Mass of a Rigid Object
The formula for CM can be expanded to Rigid Object or a 
system of many particles 

A rigid body – an object with shape 
and size with mass spread throughout 
the body, ordinary objects – can be 
considered as a group of particles with 
mass mi densely spread throughout 
the given shape of the object

∑
∑

=
+⋅⋅⋅++
+⋅⋅⋅++

=

i
i

i
ii

n

nn
CM m

xm

mmm
xmxmxm

x
21

2211

∑
∑

∑
∑

==

i
i

i
ii

CM

i
i

i
ii

CM m

zm
z

m

ym
y       ;

The position vector of the 
center of mass of a many 
particle system is M

rm

m

kzmjymixm

kzjyixr

i

ii

i
i

i
ii

i
ii

i
ii

CMCMCMCM

∑
∑

∑∑∑
=

++
=

++=

M

xm
x i

ii

CM

∑ ∆
≈

∫
∑

=
∆

=
→∆

xdm
MM

xm
x i

ii

mCM
i

1
lim

0

∫= dmr
M

r CM
1

∆mi

ri
rCM
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Example 9.13

The formula for CM of a continuous object is

∫
=

=
=

Lx

xCM xdm
M

x
0

1

Therefore

L

x dx
dm=λdx

Since the density of the rod is constant, one can write
LMdxdm /   where; == λλ

22
11

2
11

2
111 2

0

2

0

L
ML

M
L

M
x

M
xdx

M
x

Lx

x

Lx

xCM =





=






=



==

=

=

=

=∫ λλλ

Show that the center of mass of a rod of mass M and length L lies in midway 
between its ends, assuming the rod has a uniform mass per unit length.

Find the CM when the density of the rod non-uniform but varies linearly as a function of x, λ=α x

3
2

3
21

3
11

3
1111

3

0

3

0

2

0

L
ML

M
L

M

x
M

dxx
M

xdx
M

x
Lx

x

Lx

x

Lx

xCM
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=
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=

=

=

=

=

= ∫∫

α

ααλ

2

0

2

00

2
1

2
1

Lx

xdxdxM
Lx

x

Lx

x
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x

αα

αλ
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=
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Motion of a Group of Particles
We’ve learned that the CM of a system can represent the motion of a system.  
Therefore, for an isolated system of many particles in which the total mass M is 
preserved, the velocity, total momentum, acceleration of the system are

Velocity of the system
M

vm

dt
rd

m
M

rm
Mdt

d
dt
rd

v
iii

iii
CM

CM
∑∑∑ ==






==

11

Total Momentum 
of the system ∑∑∑ ==== iii

ii
CMtot pvm

M

vm
MvMp

Acceleration of 
the system M

am

dt
vd

m
M

vm
Mdt

d
dt
vd

a
iii

iii
CM

CM
∑∑∑ ==






==

11

External force exerting 
on the system dt

pd
amaMF tot

iiCM
ext

=== ∑∑

If net external force is 0 const    ;0 ===∑ tot
tot

ext
p

dt
pd

F System’s momentum 
is conserved.

What about the 
internal forces?



May. 1, 2002 1443-501 Spring 2002
Dr. J. Yu, Lecture #24

32

Using what we have learned in the previous slide, how 
would you define the angular displacement? if θθθ −=∆
Angular Displacement, Velocity, and Acceleration

How about the average angular speed?
ttt if

if

∆
∆

=
−

−
≡

θθθ
ω

And the instantaneous angular speed?
dt
d

tt

θθ
ω =

∆
∆

≡
→∆

lim
0

By the same token, the average angular 
acceleration ttt if

if

∆
∆

=
−

−
≡

ωωω
α

And the instantaneous angular 
acceleration? dt

d
tt

ωω
α =

∆
∆

≡
→∆

lim
0

When rotating about a fixed axis, every particle on a rigid object rotates through  
the same angle and has the same angular speed and angular acceleration.

θi

θf
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Rotational Kinematics
The first type of motion we have learned in linear kinematics was 
under a constant acceleration.  We will learn about the rotational 
motion under constant acceleration, because these are the simplest 
motions in both cases.

tif αωω +=

Just like the case in linear motion, one can obtain

Angular Speed under constant 
angular acceleration:

Angular displacement under 
constant angular acceleration:

2

2
1

ttiif αωθθ ++=

One can also obtain ( )ifif θθαωω −+= 222
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Example 10.1
A wheel rotates with a constant angular acceleration pf 3.50 rad/s2.  If 
the angular speed of the wheel is 2.00 rad/s at ti=0, a) through what 
angle does the wheel rotate in 2.00s?

( )

.75.1.
2

0.11
0.11

00.250.3
2
1

00.200.2

2
1

2

2

revrevrad

ttif

===

×+×=

+=−

π

αωθθ
Using the angular displacement 
formula in the previous slide, one gets

What is the angular speed at t=2.00s?

srad

tif

/00.9
00.250.300.2

=
×+=

+= αωω

Using the angular speed and 
acceleration relationship

Find the angle through which the wheel 
rotates between t=2.00 s and t=3.00 s.

( )

.72.1.
2

8.10
8.10

8.2100.350.3
2
1

00.300.2

0.11

2

2
3

2

revrevrad

rad

rad

===−=∆

=×+×=

=

3 π
θθθ

θ

θ
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Rotational Energy
What do you think the kinetic energy of a rigid object 
that is undergoing a circular motion is? 

Since a rigid body is a collection of masslets, 
the total kinetic energy of the rigid object is

By defining a new quantity called, 
Moment of Inertia, I, as

Kinetic energy of a masslet, mi, 
moving at a tangential speed, vi, is

What are the dimension and unit of Moment of Inertia?

ri

mi

θ

O x

y vi

2== ω22

2
1

2
1

iiiii rmvmK

22 







=== ∑∑∑ ωω

i
ii

i
ii

i
iR rmrmKK 22

2
1

2
1

∑=
i

iirmI 2 2= ωIKR 2
1The above expression 

is simplified as
2mkg⋅ [ ]2ML

What similarity do you see between 
rotational and linear kinetic energies?

What do you think the 
moment of inertia is?

Measure of resistance of an object to 
changes in its rotational motion.

Mass and speed in linear kinetic energy are 
replaced by moment of inertia and angular speed.
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Example 10.4
In a system consists of four small spheres as shown in the figure, assuming the radii are 
negligible and the rods connecting the particles are massless, compute the moment of 
inertia and the rotational kinetic energy when the system rotates about the y-axis at ω.

222222 200 MlmmMlMlrmI i
i

i =⋅+⋅++== ∑

Since the rotation is about y axis, the moment of 
inertia about y axis, Iy, is

( ) 22222 2
2
1

2
1

ωωω MlMlIK R ===Thus, the rotational kinetic energy is 

Find the moment of inertia and rotational kinetic energy when the system rotates on 
the x-y plane about the z-axis that goes through the origin O.

x

y

This is because the rotation is done about y axis, 
and the radii of the spheres are negligible.Why are some 0s?

M Ml l

m

m

b

b
O

( )2222222 2 mbMlmbmbMlMlrmI i
i

i +=+++== ∑ ( ) ( ) 2222222 22
2
1

2
1

ωωω mbMlmbMlIKR +=+==
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Calculation of Moments of Inertia
Moments of inertia for large objects can be computed, if we assume 
the object consists of small volume elements with mass, ∆mi.

It is sometimes easier to compute moments of inertia in terms of volume of the elements 
rather than their mass

Using the volume density, ρ, replace 
dm in the above equation with dV.

The moment of inertia for the large rigid object is ∫∑ =∆=
→∆

dmrmrI
i

iimi

22

0
lim

dVm
dV
dm

ρρ == d   ; The moments of 
inertia becomes ∫= dVrI 2ρ

Example 10.5: Find the moment of inertia of a uniform hoop of mass M and radius R 
about an axis perpendicular to the plane of the hoop and passing through its center.

x

y

RO

dm The moment 
of inertia is

222 MRdmRdmrI === ∫∫

What do you notice 
from this result?

The moment of inertia for this 
object is the same as that of a 
point of mass M at the distance R.
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Example 10.6
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis perpendicular to the rod and passing through its center of mass.

The line density of the rod is  

What is the moment of inertia 
when the rotational axis is at 
one end of the rod.

x

y

L
x

dx

L
M

=λ

so the masslet is  dx
L
M

dxdm == λ

The moment 
of inertia is  

1243223

3
1

2333

2/

2/

32/

2/

2
2

MLL
L

MLL
L

M

x
L
M

dx
L
Mx

dmrI
L

L

L

L

=







=


















 −−






=





===

−
−∫∫

( )[ ] ( )
33

0
3

3
1

2
33

0

3

0

2
2

ML
L

L
M

L
L

M

x
L

M
dx

L
Mx

dmrI
L

L

==−=





=== ∫∫

Will this be the same as the above.  
Why or why not?

Since the moment of inertia is resistance to motion, it makes perfect sense 
for it to be harder to move when it is rotating about the axis at one end.
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x

y

(x,y)

xCM

(xCM,yCM)

y CM

CM

Parallel Axis Theorem
Moments of inertia for highly symmetric object is relatively easy if the 
rotational axis is the same as the axis of symmetry.  However if the axis of 
rotation does not coincide with axis of symmetry, the calculation can still be 
done in simple manner using parallel-axis theorem. 2MDII CM +=

y

x

r

Moment of inertia is defined ( ) (1)   222 ∫∫ +== dmyxdmrI

Since x and y are

x’

y’

'     ;' yyyxxx CMCM +=+=

One can substitute x and y in Eq. 1 to obtain

( ) ( )[ ]
( ) ( )dmyxdmyydmxxdmyx

dmyyxxI

CMCMCMCM

CMCM

∫∫∫∫
∫

+++++=

+++=

2222

22

'''2'2

''

Since the x’ and y’ are the 
distance from CM, by definition ∫

∫
=

=

0'

0'

dmy

dmx
D

Therefore, the parallel-axis theorem
2MDII CM +=

What does this 
theorem tell you?

Moment of inertia of any object about any arbitrary axis are the same as 
the sum of moment of inertia for a rotation about the CM and that of the 
CM about the rotation axis.
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Example 10.8
Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an 
axis that goes through one end of the rod, using parallel-axis theorem.

The line density of the rod is  

Using the parallel axis theorem

L
M

=λ

so the masslet is  dx
L
M

dxdm == λ

The moment of 
inertia about 
the CM 

1243223

3
1

2333

2/

2/

32/

2/

2
2

MLL
L

MLL
L

M

x
L
M

dx
L
Mx

dmrI
L

L

L

LCM

=







=


















 −−






=





===

−
−∫∫

MDII CM
2+=

The result is the same as using the definition of moment of inertia.
Parallel-axis theorem is useful to compute moment of inertia of a rotation of a 
rigid object with complicated shape about an arbitrary axis

x

y

L
x

dxCM

3412212

22222 MLMLML
M

LML
=+=






+=
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Torque
Torque is the tendency of a force to rotate an object about some axis.  
Torque, τ, is a vector quantity.

FdrF =≡ φτ sinMagnitude of torque is defined as the product of the force 
exerted on the object to rotate it and the moment arm.

F
φ

d

Line of 
Action

Consider an object pivoting about the point P
by the force F being exerted at a distance r. 

P

r

Moment 
arm

The line that extends out of the tail of the force 
vector is called the line of action.
The perpendicular distance from the pivoting point 
P to the line of action is called Moment arm.

When there are more than one force being exerted on certain 
points of the object, one can sum up the torque generated by each 
force vectorially.  The convention for sign of the torque is positive if 
rotation is in counter-clockwise and negative if clockwise. 

d2

F2

22

21

dFFd −=

+=∑ τττ



May. 1, 2002 1443-501 Spring 2002
Dr. J. Yu, Lecture #24

42

Torque & Angular Acceleration
Let’s consider a point object with mass m rotating in a circle.

What does this mean?

The tangential force Ft and radial force Fr

The tangential force Ft is

What do you see from the above relationship?

m
r

Ft

Fr

What forces do you see in this motion?

αmrmaF tt ==

The torque due to tangential force Ft is ατ 2mrrmarF tt ===

ατ I=
Torque acting on a particle is proportional to the angular acceleration.

What law do you see from this relationship? Analogs to Newton’s 2nd law of motion in rotation.

How about a rigid object?

r

dFt

dm

O

The external tangential force dFt is αdmrdmadF tt ==

αατ Idmr == ∫∑ 2

The torque due to tangential force Ft is
The total torque is

( )ατ dmrrdFd t
2==

What is the contribution due 
to radial force and why?

Contribution from radial force is 0, because its 
line of action passes through the pivoting 
point, making the moment arm 0.
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Example 10.10
A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is 
free to rotate about the pivot in the vertical plane.  The rod is released from rest in the 
horizontal position what is the initial angular acceleration of the rod and the initial linear 
acceleration of its right end?

The only force generating torque is the gravitational force Mg

ατ I
L

Mg
L

FFd ====
22

Using the relationship between tangential and 
angular acceleration

33

2

0

3

0

2

0

2 MLx
L
M

dxxdmrI
L

LL
=














=== ∫∫ λSince the moment of inertia of the rod 

when it rotates about one end is

L/2

Mg

We obtain 

L
g

ML
MgL

I
MgL

2
3

3
22 2 ===α

2
3g

Lat == α
What does this mean?

The tip of the rod falls faster than 
an object undergoing a free fall.
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Work, Power, and Energy in Rotation
Let’s consider a motion of a rigid body with a single external 
force F exerted on the point P, moving the object by ds.
The work done by the force F as the object rotates 
through infinitesimal distance ds=rdθ in a time dt is 

What is Fsinφ? The tangential component of force F.

( ) θφ rdFsdFdW sin=⋅=

Since the magnitude of torque is rFsinφ,

F
φ

O

rdθ
ds

What is the work done by 
radial component Fcosφ?

Zero, because it is perpendicular to the 
displacement.

θτddW =

The rate of work, or power becomes τω
θτ

===
dt
d

dt
dW

P
How was the power 
defined in linear motion?

The rotational work done by an external force 
equals the change in rotational energy. 














=






==∑ dt

d
d
d

I
dt
d

II
θ

θ
ωω

ατ

The work put in by the external force then
22

2
1

2
1

fi IIdIdW

dIddW

f ωωωωθτ

ωωθτ
ω

ω

θ

θ ι

ι

ι

−===

==

∫∑ ∫ ∑
∑
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Similarity Between Linear and Rotational Motions
All physical quantities in linear and rotational motions show striking similarity.

Momentum
RotationalKineticKinetic Energy

Power
WorkWorkWork
TorqueForceForce

Acceleration
Speed

Angle     (Radian)DistanceLength of motion

Moment of InertiaMassMass
RotationalLinearSimilar Quantity

∫= dmrI 2

dt
dr

v =
dt

d θ
ω =

dt
dv

a =
dt

d ω
α =

maF = ατ I=
∫= f

i

x

x
FdxW

vFP ⋅= τω=P

2

2
1

mvK = 2

2
1

ωIK R =

L

M

θ

∫= f

i

dW
θ

θ
θτ

vmp = ωIL =
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Rolling Motion of a Rigid Body
What is a rolling motion?

To simplify the discussion, let’s 
make a few assumptions

Let’s consider a cylinder rolling without slipping on a flat surface

A more generalized case of a motion where the 
rotational axis moves together with the object

Under what condition does this “Pure Rolling” happen?

The total linear distance the CM of the cylinder moved is

Thus the linear 
speed of the CM is

A rotational motion about the moving axis

1. Limit our discussion on very symmetric 
objects, such as cylinders, spheres, etc

2. The object rolls on a flat surface

R θ s

s=Rθ

θRs=

ω
θ

R
dt
d

R
dt
ds

vCM ===

Condition for “Pure Rolling”
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Total Kinetic Energy of a Rolling Body

Where, IP, is the moment of 
inertia about the point P.

Since it is a rotational motion about the point 
P, we can writ the total kinetic energy

Since vCM=Rω, the above 
relationship can be rewritten as

2

2
1

ωPIK =

What do you think the total kinetic 
energy of the rolling cylinder is?

P

P’

CM
vCM

2vCM

Using the parallel axis theorem, we can rewrite

2222

2
1

2
1

2
1

ωωω MRIIK CMP +==

22

2
1

2
1

CMCM MvIK += ω

What does this equation mean? Rotational kinetic 
energy about the CM

Translational Kinetic 
energy of the CM

Total kinetic energy of a rolling motion is the sum 
of the rotational kinetic energy about the CM And the translational

kinetic of the CM



May. 1, 2002 1443-501 Spring 2002
Dr. J. Yu, Lecture #24

48

Example 11.1
For solid sphere as shown in the figure, calculate the linear speed of the CM at the 
bottom of the hill and the magnitude of linear acceleration of the CM.

22

5
2

MRdmrICM == ∫

The moment of inertia the 
sphere with respect to the CM!!

Since h=xsinθ, 
one obtains

Thus using the formula in the previous slide

What must we know first?R

xh

θ
vCM

ω

gh
gh

MRI
gh

v
CM

CM 7
10

5/21
2

/1
2

2 =
+

=
+

=

θsin
7

102 gxvCM = Using kinematic
relationship

xav CMCM 22 =

The linear acceleration 
of the CM is θsin

7
5

2

2

g
x

v
a CM

CM ==
What do you see?

Linear acceleration of a sphere does 
not depend on anything but g and θ.
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x

y

z

O

Torque and Vector Product

The magnitude of torque given to the disk by the force F is

Let’s consider a disk fixed onto the origin O and 
the force F exerts on the point p. What happens?

φτ sinFr=

θsinBABAC

BAC

=×=

×≡

The disk will start rotating counter clockwise about the Z axis

The above quantity is called 
Vector product or Cross product

Fθ

τ=rxF

r p

But torque is a vector quantity, what is the direction? 
How is torque expressed mathematically? Fr ×≡τ
What is the direction? The direction of the torque follows the right-hand rule!!

What is the result of a vector product?
Another vector

What is another vector operation we’ve learned?

Scalar product θcosBABAC =⋅≡

Result? A scalar
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Angular Momentum of a Particle
If you grab onto a pole while running, your body will rotate about the pole, gaining 
angular momentum.   We’ve used linear momentum to solve physical problems 
with linear motions, angular momentum will do the same for rotational motions.

φsinmvrL =

x

y

z

O

pφ

L=rxp

r m

Let’s consider a point-like object ( particle) with mass m located 
at the vector location r and moving with linear velocity v

prL ×≡
The instantaneous angular momentum 
L of this particle relative to origin O is 

What do you learn from this? If the direction of linear velocity points to the origin of 
rotation, the particle does not have any angular momentum.

What is the unit and dimension of angular momentum? 22 /smkg⋅

Note that L depends on origin O. Why? Because r changes

The direction of L is +zWhat else do you learn? 
Since p is mv, the magnitude of L becomes

If the linear velocity is perpendicular to position vector, the 
particle moves exactly the same way as a point on a rim.

The point O has 
to be inertial.
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Angular Momentum and Torque

Total external forces exerting on a particle is the same as the change of its linear momentum.

Can you remember how net force exerting on a particle 
and the change of its linear momentum are related?

dt
pd

rFr ×=×= ∑∑ τ

Thus the torque-angular 
momentum relationship

The same analogy works in rotational motion between torque and angular momentum. 

Net torque acting on a particle is 

The net torque acting on a particle is the same as the time rate change of its angular momentum

dt
pd

F =∑

( )
dt

pd
r

dt
pd

rp
dt

rd
dt

prd
dt

Ld
×+=×+×=

×
= 0

dt
Ld

=∑ τ
x

y

z

O

pφ

L=rxp

r m Why does this work? Because v is parallel to 
the linear momentum
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Example 11.4
A particle of mass m is moving in the xy plane in a circular path of radius r and linear 
velocity v about the origin O.  Find the magnitude and direction of angular momentum 
with respect to O.

r

x

y v

O

vrmvmrprL ×=×=×=
Using the definition of angular momentum

Since both the vectors, r and v, are on x-y plane and 
using right-hand rule, the direction of the angular 
momentum vector is +z (coming out of the screen)

The magnitude of the angular momentum is mrvmrvmrvvrmL ===×= o90sinsin φ

So the angular momentum vector can be expressed as kmrvL =

Find the angular momentum in terms of angular velocity ω.

ωωω ImrkmrkmrvL ==== 22

Using the relationship between linear and angular speed 
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Example 11.6
A rigid rod of mass M and length l pivoted without friction at its center.  Two particles of mass 
m1 and m2 are connected to its ends.  The combination rotates in a vertical plane with an 
angular speed of ω. Find an expression for the magnitude of the angular momentum.







 ++=

++=++=

21

2

2
2

2
1

2

3
1

4

4
1

4
1

12
1

21

mmM
l

lmlmMlIIII mmrod

The moment of inertia of this system is

( ) ( )
lg

mmM

mm

mmM
l

glmm

I
ext /

3
1

cos2

3
1

4

cos
2
1

21

11

21

2

11







 ++

−
=







 ++

−
== ∑ θθτ

α

First compute net 
external torque

 cos
2

  ;cos
2 221 θτθτ

l
gm

l
gm −==1

m1 g

x

y

O

l

m1

m2

θ m2 g

If m1 = m2, no angular 
momentum because net 
torque is 0. 
If θ=+/−π/2, at equilibrium 
so no angular momentum.







 ++== 21

2

3
1

4
mmM

l
IL

ω
ω

Find an expression for the magnitude of the angular acceleration of the 
system when the rod makes an angle θ with the horizon.

( )
2

cos 21
2

mmgl
ext

−
=+= 1

θ
τττ

Thus α 
becomes
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Example 11.8
A start rotates with a period of 30days about an axis through its center.  After the star 

undergoes a supernova explosion, the stellar core, which had a radius of 1.0x104km, collapses 
into a neutron start of radius 3.0km.  Determine the period of rotation of the neutron star.  

T
π

ω
2

=

What is your guess about the answer? The period will be significantly shorter, 
because its radius got smaller.

ffi

fi

II

LL

ωω ι =

=

Let’s make some assumptions: 1. There is no torque acting on it
2. The shape remains spherical
3. Its mass remains constant

The angular speed of the star with the period T is

Using angular momentum 
conservation

Thus

sdaysdaysT
r

r
T

Tmr
mr

I
I

i
i

f

f
f

if

i

f

i
f

23.0107.230
100.1
0.32

2

6
2

42

2

2

2

=×=×







×
=










==

==

−

ω
π

πω
ω ι



May. 1, 2002 1443-501 Spring 2002
Dr. J. Yu, Lecture #24

55

Conditions for Equilibrium
What do you think does the term “An object is at its equilibrium” mean?

∑ = 0F

The object is either at rest (Static Equilibrium) or its center of mass 
is moving with a constant velocity (Dynamic Equilibrium). 

Is this it?   

When do you think an object is at its equilibrium?

Translational Equilibrium: Equilibrium in linear motion 

The above condition is sufficient for a point-like particle to be at its static 
equilibrium.   However for object with size this is not sufficient.   One more 
condition is needed.  What is it? 

Let’s consider two forces equal magnitude but opposite direction acting 
on a rigid object as shown in the figure.   What do you think will happen?

CM
d

d

F

-F

The object will rotate about the CM. The net torque 
acting on the object about any axis must be 0. 

For an object to be at its static equilibrium, the object should not 
have linear or angular speed. 

∑ = 0τ

0=CMv 0=ω
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More on Conditions for Equilibrium
To simplify the problems, we will only deal with forces acting on x-y plane, giving torque 
only along z-axis.   What do you think the conditions for equilibrium be in this case? 

The six possible equations from the two vector equations turns to three equations.

What happens if there are many forces exerting on the object?

Net torque about O

∑ = 0F ∑ = 0τ

∑
∑

=

=

0

0

y

x

F

F ∑ = 0zτ

O

F
1

F
4

F3

F 2

F5

r5 O’
r’

If an object is at its translational static equilibrium, and if the 
net torque acting on the object is 0 about one axis, the net 
torque must be 0 about any arbitrary axis.

∑ =⋅⋅⋅+++= 0321 FFFF

∑ ∑ =×=⋅⋅⋅+×+×+×= 0332211 iiO FrFrFrFrτ

Net Force exerting on the object

'
'

rrr ii −=Position of force Fi about O’

Net torque about O’ ( ) ( )∑ ∑ ∑×−×=⋅⋅⋅+×−+×−=⋅⋅⋅+×+×= iiiO FrFrFrrFrrFrFr ''''' 22112211'τ

∑ ∑∑ ==×−×= 00'' OiiO rFr ττ
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Example 12.1
A uniform 40.0 N board supports a father and daughter weighing 800 N and 350 N, 
respectively.   If the support (or fulcrum) is under the center of gravity of the board and 
the father is 1.00 m from CoG, what is the magnitude of normal force n exerted on the 
board by the support?

0

0

=−++=

=

∑
∑

ngMgMgMF

F

DFBy

x

Since there is no linear motion, this system 
is in its translational equilibriumF D

n

MBgMFg MFg

1m x

Therefore the magnitude of the normal force Nn 11903508000.40 =++=
Determine where the child should sit to balance the system.

The net torque about the fulcrum 
by the three forces are 

000.10 =⋅−⋅+⋅= xgMgMgM DFBτ

Therefore to balance the system 
the daughter must sit

mmm
gM
gM

x
D

F 29.200.1
350
800

00.1 =⋅=⋅=
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Example 12.1 Continued
Determine the position of the child to balance the 
system for different position of axis of rotation.

Since the normal force is 

The net torque about the axis of 
rotation by all the forces are 

( ) 02/2/2/00.12/ =⋅−⋅−+⋅+⋅= xgMxnxgMxgM DFBτ

Therefore mmm
gM
gM

x
D

F 29.200.1
350
800

00.1 =⋅=⋅=

gMgMgMn DFB ++=

The net torque can 
be rewritten 

( )
( )

000.1
2/2/

2/00.12/

=⋅−⋅=
⋅−⋅++−

+⋅+⋅=

xgMgM
xgMxgMgMgM

xgMxgM

DF

DDFB

FBτ

What do we learn?

No matter where the 
rotation axis is, net effect of 
the torque is identical.

F D
n

MBgMFg MFg

1m x

x/2

Rotational axis
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Example 12.3
A uniform horizontal beam with a length of 8.00m and a weight of 200N is attached to a wall 
by a pin connection.  Its far end is supported by a cable that makes an angle of 53.0o with the 
horizontal.  If 600N person stands 2.00m from the wall, find the tension in the cable, as well as 
the magnitude and direction of the force exerted by the wall on the beam.

02006000.53sinsin

00.53coscos

=−−+=

=−=

∑
∑

NNTRF

TRF

y

x

o

o

θ

θ

From the rotational equilibrium

Using the 
translational 
equilibrium 

8m

53.0o

2m
FBD

R T

600Ν 200Ν

53.0oθ

Tsin53
Tcos53

Rsinθ

Rcosθ

First the translational equilibrium, 
using components

NT

mNNT

313

000.420000.260000.80.53sin

=

=⋅−×−×=∑ oτ

o
o

o

o

o

7.71
0.53cos313

0.53sin313800
tan

2006000.53sinsin

0.53coscos

1 =






 ×−
=

++−=

=

−θ

θ

θ

NNTR

TR And the magnitude of R is 

N
T

R 582
1.71cos

0.53cos313
cos

0.53cos
=

×
== o

oo

θ
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Example 12.4
A uniform ladder of length l and weight mg=50 N rests against a smooth, vertical wall.  If 
the coefficient of static friction between the ladder and the ground is µs=0.40, find the 
minimum angle θmin at which the ladder does not slip.

0

0

=+−=

=−=

∑
∑

nmgF

PfF

y

x

θ

l FBD

First the translational equilibrium, 
using components

Thus, the normal force is 

o51
40
50

tan
2

tan

0sincos
2

11
min

minmin

=





=






=

=+−=

−−

∑

N
N

P
mg

Pl
l

mgO

θ

θθτ

mg

P

f

n
O

Nmgn 50==
The maximum static friction force 
just before slipping is, therefore, PNNnf ss ==×== 20504.0max µ

From the rotational equilibrium
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Example 12.7
A solid brass sphere is initially under normal atmospheric pressure of 1.0x105N/m2.  The 
sphere is lowered into the ocean to a depth at which the pressures is 2.0x107N/m2.  The 
volume of the sphere in air is 0.5m3.  By how much its volume change once the sphere is 
submerged?

The pressure change ∆P is

Since bulk modulus is

iV
V

P
∆

∆
−=B

The amount of volume change is
B

iPV
V

∆
−=∆

From table 12.1, bulk modulus of brass is 6.1x1010 N/m2

757 100.2100.1100.2 ×≈×−×=−=∆ if PPP

Therefore the resulting 
volume change ∆V is

34
10

7

106.1
106.1

5.0100.2
mVVV if

−×−=
×

××
−=−=∆

The volume has decreased.
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The Pendulum
A simple pendulum also performs periodic motion.

The net force exerted on the bob is 

2

2

sin

0cos

dt
sd

mmamgF

mgTF

At

Ar

==−=

=−=

∑

∑
θ

θ

ALs θ=

Again became a second degree differential equation, 
satisfying conditions for simple harmonic motion

If θ is very small, sinθ~θ

Since the arc length, s, is  

θ
θ

sin2

2

2

2

g
dt
d

L
dt

sd
−== θ

θ
sin2

2

L
g

dt
d

−=results

mg
m

θ
L

T

s

θωθ
θ 2
2

2

−=−=
L
g

dt
d

L
g

=ωgiving angular frequency

The period for this motion is
g
L

T π
ω
π

2
2

== The period only depends on the 
length of the string and the 
gravitational acceleration
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Physical Pendulum
Physical pendulum is an object that oscillates about a fixed 
axis which does not go through the object’s center of mass.

Therefore, one can rewrite

Thus, the angular frequency ω is

The magnitude of the net torque provided by the gravity is  
θτ sinmgd−=∑

I
mgd

=ω

And the period for this motion is
mgd

I
T π

ω
π

2
2

==

By measuring the period of 
physical pendulum, one can 
measure moment of inertia.

O

CM

d

dsinθ

θ

mg

Consider a rigid body pivoted at a point O that is a distance d from the CM.

θ
θ

ατ sin2

2

mgd
dt
d

II −===∑Then 

θωθθ
θ 2−=






−≈−=

I
mgd

I
mgd

dt
d

sin2

2

Does this work for 
simple pendulum?
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Example 13.6
A uniform rod of mass M and length L is pivoted about one end and oscillates in a vertical 
plane.  Find the period of oscillation if the amplitude of the motion is small.

Moment of inertia of a uniform rod, 
rotating about the axis at one end is

Since L=1m, 
the period is

L

O
Pivot

CM

Mg

2

3
1

MLI =

The distance d from the pivot to the CM is L/2, 
therefore the period of this physical pendulum is

g
L

MgL
ML

Mgd
I

T
3
2

2
3
2

22
2 2

πππ
ω
π

====

Calculate the period of a meter stick that is pivot about one end and is oscillating in 
a vertical plane.

s
g
L

T 64.1
8.93

2
2

3
2

2 =
⋅

== ππ So the 
frequency is

161.0
1 −== s
T

f
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Simple Harmonic and Uniform Circular Motions
Uniform circular motion can be understood as a 
superposition of two simple harmonic motions in x and y axis.

When the particle rotates at a uniform angular 
speed ω, x and y coordinate position become

Since the linear velocity in a uniform circular 
motion is Aω, the velocity components are

( )
( )φωθ

φωθ
+==
+==

tAAy
tAAx

sinsin
coscos

t=0

x

y

O

P

φ
A

x

y

O

P

θ
A

Q

ω

x

y

t=t θ=ωt+φ

x

y

O

P

θ
A

Q

v

vx

( )
( )φωωθ

φωωθ
+=+=
+−=−=

tAvv

tAvv

y

x

coscos

sinsin

x

y

O

P

θ
A

Q

a

ax

Since the radial acceleration in a uniform circular 
motion is v2/A=ω2Α, the components are

( )
( )φωωθ

φωωθ

+−=−=

+−=−=

tAaa

tAaa

y

x

sinsin

coscos
2

2
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Example 13.7
A particle rotates counterclockwise in a circle of radius 3.00m with a constant angular 
speed of 8.00 rad/s.  At t=0, the particle has an x coordinate of 2.00m and is moving to 
the right.   A) Determine the x coordinate as a function of time.

Since the radius is 3.00m, the amplitude of oscillation in x direction is 3.00m.  And the 
angular frequency is 8.00rad/s.  Therefore the equation of motion in x direction is

Since x=2.00, when t=0

However, since the particle was 
moving to the right φ=-48.2o, 

Using the 
displcement

( ) ( )φθ +== tmAx 00.8cos00.3cos

( ) o2.48
00.3
00.2

cos   ;cos00.300.2 1 =





== −φφm

( ) ( )o2.4800.8cos00.3 −= tmx
Find the x components of the particle’s velocity and acceleration at any time t.

( ) ( ) ( ) ( )o2.4800.8sin/0.242.4800.8sin00.800.3 −−=−⋅−== tsmt
dt
dx

vx

Likewise, 
from velocity ( ) ( ) ( ) ( )o2.4800.8cos/1922.4800.8cos00.80.24 2 −−=−⋅−== tsmt

dt
dv

ax
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Damped Oscillation
More realistic oscillation where an oscillating object loses its mechanical 
energy in time by a retarding force such as friction or air resistance.

2

2

dt
xd

m
dt
dx

bkx

mabvkxF xx

=−−

=−−=∑

The angular frequency ω 
for this motion is

The solution for the above 2nd order 
differential equation is  ( )φω +=

−
tAex

t
m
b

cos2

We express the 
angular frequency as

This equation of motion tells us that when the retarding force is much smaller than restoration 
force, the system oscillates but the amplitude decreases, and  ultimately, the oscillation stops.

Let’s consider a system whose retarding force 
is air resistance R=-bv (b is called damping 
coefficient) and restoration force is -kx

2

2






−=

m
b

m
k

ω

2

2






−= 2

0 m
b

ωω
m
k

=0ωWhere the natural 
frequency ω0
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Free Fall Acceleration & Gravitational Force
Weight of an object with mass m is 
mg. Using the force exerting on a 
particle of mass m on the surface of 
the Earth, one can get

•The gravitational acceleration is independent of the mass of the object
•The gravitational acceleration decreases as the altitude increases
•If the distance from the surface of the Earth gets infinitely large, the weight of the 
object approaches 0.

What would the gravitational 
acceleration be if the object is at 
an altitude h above the surface of 
the Earth?

2

2

E

E

E

E

R
M

Gg

R
mM

Gmg

=

=

What do these tell us about the gravitational acceleration?

( )

( )2

2

'

'

hR
M

Gg

hR
mM

G
r

mM
GmgF

E

E

E

EE
g

+
=

+
===
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Example 14.2
The international space station is designed to operate at an altitude of 350km.  When 
completed, it will have a weight (measured on the surface of the Earth) of 4.22x106N.  
What is its weight when in its orbit?

The total weight of the station on the surface of the Earth is

Therefore the weight in the orbit is

N
R

mM
GmgF

E

E
E

6
2 1022.4 ×===

( ) ( ) E
E

E

E

E
O F

hR
R

hR
mM

GmgF 2

2

2'
+

=
+

==

Since the orbit is at 350km above the surface of the Earth, 
the gravitational force at that height is

MEEE

( )
( )

( ) NF
hR

R
F E

E

E
O

66
256

26

2

2

1080.31022.4
1050.31037.6

1037.6
×=××

×+×

×
=

+
=
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Example 14.3
Using the fact that g=9.80m/s2 at the Earth’s surface, find the average density of the Earth.

2
11

2 1067.6
E

E

E

E

R
M

R
M

Gg −×==

Since the gravitational acceleration is 

So the mass of the Earth is  

G
gR

M E
E

2

=

Therefore the density of the 
Earth is  

33
611

3

2

/1050.5
1037.61067.64

80.93

4
3

4

mkg

GR
g

R

G
gR

V
M

E
E

E

E

E

×=
××××

×
=

=

3

==

−π

ππ
ρ
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The Law of Gravity and the Motion of Planets
•Newton assumed that the law of gravitation applies the same 
whether it is on the Moon or the apple on the surface of the Earth.
•The interacting bodies are assumed to be point like particles.

Therefore the centripetal acceleration of the Moon, aM, is

Newton predicted that the ratio of the Moon’s 
acceleration aM to the apple’s acceleration g would be 

( )
( )

4

2

8

62

2

2

1075.2
1084.3
1037.6

/1
/1 −×=








×
×

=







==

M

E

E

MM

r
R

R
r

g
a

RE

Moon
Apple g aM

v

234 /1070.280.91075.2 smaM
−− ×=××=

Newton also calculated the Moon’s orbital acceleration aM from the knowledge of its distance 
from the Earth and its orbital period, T=27.32 days=2.36x106s

( )
( )2

23
6

822

60
80.9

/1072.2
1036.2

1084.344/2
≈×=

×
××

==== −
22

sm
T

r
r

Tr
r
v

a M

M

M

M
M

πππ

This means that the Moon’s distance is about 60 times that of the Earth’s radius, its acceleration 
is reduced by the square of the ratio.   This proves that the inverse square law is valid. 
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Kepler’s Third Law
It is crucial to show that Keper’s third law can be predicted from the 
inverse square law for circular orbits.

Since the orbital speed, v, of the planet with period T is

Since the gravitational force exerted by the Sun is radially
directed toward the Sun to keep the planet circle, we can 
apply Newton’s second law

r

vM

r
MGM pPs

2

2 =

T
r

v
π2

=

The above can be written

This is Keper’s third law.  It’s also valid for ellipse for r being the length of the 
semi-major axis.  The constant Ks is independent of mass of the planet. 

Msss

v

r

( )
r

TrM

r
MGM pPs

2

2

/2π
=

Solving for T 
one can obtain 

33
24

rKr
GM

T s
s

=







=

π 3219
2

/1097.2
4

ms
GM

K
s

s
−×=








=

π
and
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Kepler’s Second Law and Angular Momentum Conservation

Since the gravitational force acting on the planet is 
always toward radial direction, it is a central force

Consider a planet of mass Mp moving around the Sun in an elliptical orbit.

0ˆ =×=×= rFrFrτ

Because the gravitational force exerted on a 
planet by the Sun results in no torque, the 
angular momentum L of the planet is constant. 

This is Keper’s second law which states that the radius vector from the Sun 
to a planet sweeps our equal areas in equal time intervals. 

dt
M
L

dtvrrdrdA
p22

1
=×=×=

Therefore the torque acting on the planet by this 
force is always 0.

Since torque is the time rate change of angular 
momentum L, the angular momentum is constant. constL

dt
Ld

===    ;0τ

constvrMvMrprL pp =×=×=×=

S B
A

D

C

r
dr

Since the area swept by the 
motion of the planet is const

M
L

dt
dA

p

==
2
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More on The Gravitational Potential Energy
Since the gravitational force is a radial force, it only performed work while the 
path was radial direction only. Therefore, the work performed by the gravitational 
force that depends on the position becomes

Therefore the potential energy is the 
negative change of work in the path

( ) ( )∫= →=⋅= f

i

r

r
drrFWdrrFrdFdW path  wholeFor the

( )∫−=−=∆
f

i

r

rif drrFUUU

Since the Earth’s gravitational force is ( ) 2r
mGM

rF E−=

So the potential energy 
function becomes ∫












−−==− f

i

r

r
if

E
E

if rr
mGMdr

r
mGM

UU
11

2

Since potential energy only matters for differences, by taking the 
infinite distance as the initial point of the potential energy, we get r

mGM
U E−=

For any two 
particles? r

mGm
U 21−=

The energy needed 
to take the particles 
infinitely apart.

For many  
particles?

∑=
ji

jiUU
,

,
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Energy in Planetary and Satellite Motions
Consider an object of mass m moving at a speed 
v near a massive object of mass M (M>>m).

r
GMm

mvUKE −=+= 2

2
1

Systems like Sun and Earth or Earth and Moon whose motions 
are contained within a closed orbit is called Bound Systems.

r
v

mma
r

mGM E
2

2 ==

For a system to be bound, the total energy must be negative.
Assuming a circular orbit, in order for the object to be kept in
the orbit the gravitational force must provide the radial 
acceleration.  Therefore from Newton’s second law of motion

M

v

r
What’s the 
total energy?

The kinetic energy for this system is
r

mGM
mv E

22
1 2 =

Therefore the total 
mechanical energy 
of the system is r

GMm
UKE

2
−=+=

Since the gravitational 
force is conservative, the 
total mechanical energy of 
the system is conserved.
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Example 14.7
The space shuttle releases a 470kg communication satellite while in an orbit that is 
280km above the surface of the Earth.  A rocket engine on the satellite boosts it into a 
geosynchronous orbit, which is an orbit in which the satellite stays directly over a single 
location on the Earth,  How much energy did the engine have to provide?

What is the radius of the geosynchronous orbit?

From Kepler’s 3rd law

sdayT 41064.81 ×==
32

GSE rKT =

Therefore the 
geosynchronous radius is

Because the initial position 
before the boost is 280km

mmRr Ei
65 1065.61080.2 ×=×+=

The total energy needed to 
boost the satellite at the 
geosynchronous radius is the 
difference of the total energy 
before and after the boost 

Where KE is 3214 /1089.9
4

ms
GM

K
E

E
−

2

×==
π

( ) ( )
m

K
T

r
E

GS
73

14

24
3

14

24

3

2

1023.4
1089.9
1064.8

1089.9
1064.8

×=
×
×

=
×
×

== −−

J

rr
mGM

E
iGS

sE

10
67

2411

1019.1
1065.6

1
1023.4

1
2

4701098.51067.6

11
2

×=







×
−

×
××××

−=









−−=∆

−
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Escape Speed
Consider an object of mass m is projected vertically from the surface of 
the Earth with an initial speed vi and eventually comes to stop vf=0 at 
the distance rmax.

max

2

2
1

r
mGM

R
mGM

mvUKE E

E

E
i −=−=+=

Solving the above equation 
for vi, one obtains

Therefore if the initial speed vi is known one can use 
this formula to compute the final height h of the object.

Because the total 
energy is conserved

In order for the object to escape 
Earth’s gravitational field completely, 
the initial speed needs to be

RE

m

h

ME

vi

vf=0 at h=rmax

EiE

Ei
E RvGM

Rv
Rrh 2

22

max 2 −
=−=









−=

max

11
2

rR
GMv

E
Ei

skmsm

R
GM

v
E

E
esc

/2.11/1012.1

1037.6
1098.51067.622

4

6

2411

=×=

×
××××

==
−

This is called the escape speed.  This formula is 
valid for any planet or large mass objects. 

How does this depend 
on the mass of the 
escaping object?

Independent of 
the mass of the 
escaping object
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Fluid and Pressure
What are the three states of matter? Solid, Liquid, and Gas

Fluid cannot exert shearing or tensile stress.   Thus, the only force the fluid exerts 
on an object immersed in it is the forces perpendicular to the surfaces of the object.

A
F

P ≡

How do you distinguish them?
By the time it takes for a particular substance to 
change its shape in reaction to external forces.

What is a fluid?
A collection of molecules that are randomly arranged and loosely
bound by forces between them or by the external container

We will first learn about mechanics of fluid at rest, fluid statics. 

In what way do you think fluid exerts stress on the object submerged in it?

This force by the fluid on an object usually is expressed in the form of 
the force on a unit area at the given depth, the pressure, defined as

Note that pressure is a scalar quantity because it’s 
the magnitude of the force on a surface area A.

What is the unit and 
dimension of pressure?

Expression of pressure for an 
infinitesimal area dA by the force dF is dA

dF
P =

Unit:N/m2

Dim.: [M][L-1][T-2]
Special SI unit for 
pressure is Pascal

2/11 mNPa ≡
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Pascal’s Law and Hydraulics
A change in the pressure applied to a fluid is transmitted undiminished 
to every point of the fluid and to the walls of the container.

The resultant pressure P at any given depth h increases as much as the change in P0. 

This is the principle behind hydraulic pressure. How?

Therefore, the resultant force F2 is

What happens if P0is changed?

2

2

1

1

A
F

A
F

P ==
Since the pressure change caused by the 
the force F1 applied on to the area A1 is 
transmitted to the F2 on an area A2.

ghPP ρ+= 0

This seems to violate some kind 
of conservation law, doesn’t it?

d1 d2
F1 A1

A2

F2

1
1

2
2 F

A
A

F =
In other words, the force get multiplied by 
the ratio of the areas A2/A1 is transmitted 
to the F2 on an area.

No, the actual displaced volume of the 
fluid is the same.  And the work done 
by the forces are still the same.

1
2

1
2 F

d
d

F =
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H

dy
y

h

Example 15.4
Water is filled to a height H behind a dam of width w.  Determine the resultant 
force exerted by the water on the dam.

Since the water pressure varies as a function of depth, we 
will have to do some calculus to figure out the total force. 

Therefore the total force exerted by the water on the dam is

( )yHgghP −== ρρ

The pressure at the depth h is

The infinitesimal force dF exerting on a small strip of dam dy is

( )wdyyHgPdAdF −== ρ

( ) 2

0

2

0 2
1

2
1

gHyHygwdyyHgF
Hy

y

Hy

y

ρρρ =



 −=−=

=

=

=

=
∫
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Buoyant Forces and Archimedes’ Principle
Why is it so hard to put a beach ball under water while a piece of small 
steel sinks in the water?

The water exerts force on an object immersed in the water.  
This force is called Buoyant force.

How does the 
Buoyant force work?

Let‘s consider a cube whose height is h and is filled with fluid and at its 
equilibrium. Then the weight Mg is balanced by the buoyant force B.

This is called, Archimedes’ principle. What does this mean?

The magnitude of the buoyant force always equals the weight of 
the fluid in the volume displaced by the submerged object.

MgFB g ==

BMg

h
And the pressure at the bottom of the 
cube is larger than the top by ρgh.

MgVgFB
VgghAPAB

ghABP

g ===
==∆=

==∆

ρ
ρρ

ρ/Therefore,
Where Mg is the 
weight of the fluid.
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Example 15.5
Archimedes was asked to determine the purity of the gold used in the crown.   
The legend says that he solved this problem by weighing the crown in air and 
in water.  Suppose the scale read 7.84N in air and 6.86N in water.  What 
should he have to tell the king about the purity of the gold in the crown? 

In the air the tension exerted by the scale on 
the object is the weight of the crown 

NmgTair 84.7==

In the water the tension exerted 
by the scale on the object is 

NBmgTwater 86.6=−=

Therefore the buoyant force B is NTTB waterair 98.0=−=
Since the buoyant force B is NgVgVB cwww 98.0=== ρρ
The volume of the displaced 
water by the crown is 34100.1

8.91000
98.098.0

m
g
N

VV
w

wc
−×=

×
===

ρ
Therefore the density of 
the crown is

33
4 /103.8

8.9100.1
84.784.7

mkg
gVgV

gm
V
m

cc

c

c

c
c ×=

××
==== −ρ

Since the density of pure gold is 19.3x103kg/m3, this crown is either not made of pure gold or hollow. 
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Superposition and Interference
Superposition 
Principle

If two or more traveling waves are moving through a 
medium, the resultant wave function at any point is the 
algebraic sum of the wave functions of the individual waves.

The waves that follow this principle are called linear waves which in general have 
small amplitudes.  The ones that don’t are nonlinear waves with larger amplitudes.

What do you think will happen to the water 
waves when you throw two stones on the pond? 

Two traveling linear waves can pass through each other without being destroyed or altered.

What happens to the waves at the point where they meet? 

They will pass right through each other.

The shape of wave will 
changeè Interference

Thus, one can write the 
resultant wave function as ∑

=

=+⋅⋅⋅++=
n

i
in yyyyy

1
21

Constructive interference: The amplitude increases when the waves meet 

Destructive interference: The amplitude decreases when the waves meet 
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Speed of Waves on Strings
How do we determine the speed of a transverse pulse traveling on a string?

If a string under tension is pulled sideways and released, the tension is responsible for 
accelerating a particular segment of the string back to the equilibrium position.

The speed of the wave increases.

So what happens when the tension increases? 

Which law does this hypothesis based on?

Based on the hypothesis we have laid out 
above, we can construct a hypothetical 
formula for the speed of wave 

For the given tension, acceleration decreases, so the wave speed decreases.

Newton’s second law of motion

The acceleration of the 
particular segment increases 

µ
T

v =

Which means? 

Now what happens when the mass per unit length of the string increases? 

T: Tension on the string
µ: Unit mass per length

Is the above expression dimensionally sound? T=[MLT-2], µ=[ML-1]
(T/µ)1/2=[L2T-2]1/2=[LT-1]
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Speed of Waves on Strings cont’d
Let’s consider a pulse moving to right and look at it 
in the frame that moves along with the the pulse.

Since in the reference frame moves with the pulse, 
the segment is moving to the left with the speed v, 
and the centripetal acceleration of the segment is 

What is the mass of the segment when 
the line density of the string is µ?

Using the radial 
force component

Now what do the force components 
look in this motion when θ is small?  

T TFr

O

θθ

θ θ

∆s
v

R

R
v

ar

2

=

θθ

θθ

Τ2≈=

=−=

∑
∑

sin2

0coscos

TF

TTF

r

t

θµθµµ RRsm 22 ==∆=

θθµ T
R
v

R
R
v

mmaFr 22
22

====∑

Therefore the speed of the pulse is
µ
T

v =
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Example 16.2
A uniform cord has a mass of 0.300kg and a length of 6.00m.  The cord passes over a 
pulley and supports a 2.00kg object.  Find the speed of a pulse traveling along this cord.

Thus the speed of the wave is

Since the speed of wave on a string with line 
density µ and under the tension T is 

2/6.1980.900.2 smkgMgT ⋅=×==

M=2.00kg

1.00m
5.00m

µ
T

v =

The line density µ is mkg
m
kg

/1000.5
00.6

300.0 2−×==µ

The tension on the string is 
provided by the weight of the 
object.  Therefore

sm
T

v /8.19
1000.5
6.19

2 =
×

== −µ
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Reflection and Transmission
A pulse or a wave undergoes various changes when the medium 
it travels changes.

Depending on how rigid the support is, two radically different reflection 
patterns can be observed. 

1. The support is rigidly fixed: The reflected pulse will be inverted to the 
original due to the force exerted on to the string by the support  in 
reaction to the force on the support due to the pulse on the string.

2. The support is freely moving: The reflected pulse will maintain the original 
shape but moving in the reverse direction.

If the boundary is intermediate between the above two extremes, part of the 
pulse reflects, and the other undergoes transmission, passing through the 
boundary and propagating in the new medium.
When a wave pulse travels from medium A to B:
• vA> vB (or µA<µB), the pulse is inverted upon reflection.
• vA< vB(or µA>µB), the pulse is not inverted upon reflection.
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Sinusoidal Waves
Equation of motion of a simple harmonic oscillation is a sine function.

But it does not travel.  Now how does wave form look like when the wave travels?

Thus the wave 
form can be 
rewritten

By definition, the speed of 
wave in terms of wave length 
and period T is 







= xAy

λ
π2

sin

Defining, angular 
wave number k and 
angular frequency ω, T

k
π

ω
λ
π 2

;
2

= ≡

The function describing the position of 
particles, located at x, of the medium 
through which the sinusoidal wave is 
traveling can be written at t=0

T
v

λ
=

Wave Length

The wave form of the wave traveling at the 
speed v in +x at any given time t becomes

( )





 −= vtxAy

λ
π2

sin

Amplitude















 −=

T
tx

Ay
λ

π2sin

( )tkxAy ω−= sinThe wave form 
becomes

Frequency, f,  
T

f
1

=
Wave 
speed, v kT

v
ωλ

==
General 
wave form

( )φω +−= tkxAy sin
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Example 16.3
A sinusoidal wave traveling in the positive x direction has an amplitude of 15.0cm, a wavelength 
of 40.0cm, and a frequency of 8.00Hz.  The vertical displacement of the medium at t=0 and x=0 
is also 15.0cm. a) Find the angular wave number k, period T, angular frequency ω, and speed v 
of the wave.

At x=0 and t=0, y=15.0cm, therefore 
the phase φ becomes

Using the definition, angular wave number k is  

b) Determine the phase constant φ, and write a general expression of the wave function.

mradk /7.1500.5
40.0

22
==== π

π
λ
π

sradf
T

/3.502
2

=== π
π

ωPeriod is  sec125.0
00.8
11

===
f

T Angular 
frequency is  

Using period and wave length, the wave speed is  smf
T

v /2.300.8400.0 =×=== λ
λ

( )

2
=   =

==
π

φφ

φ

;1sin

150.0sin150.0y

Thus the general 
wave function is ( ) 








2
+−=+−=

π
φω txtkxAy 3.507.15sin150.0sin
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Sinusoidal Waves on Strings
Let’s consider the case where a string is attached to an arm undergoing a simple 
harmonic oscillation.  The trains of waves generated by the motion will travel through the 
string, causing the particles in the string to undergo simple harmonic motion on y-axis.

This wave function describes the vertical motion of any point on the string at any time t.   
Therefore, we can use this function to obtain transverse speed, vy, and acceleration, ay.







= xAy

λ
π2

sin

The maximum speed and the 
acceleration of the particle in the 
medium at position x at time t are

If the wave at t=0 is What does this mean?

( )tkxAy ω−= sin

0=φ

The wave function can be written 

( )tkxA
t
y

dt
dy

v
xconst

y ωω −−=
∂
∂

== cos ( )tkxA
t

v

dt

dv
a y

xconst

y
y ωω −−=

∂

∂
== sin2

Aa

Av

y

y

2
max,

max,

ω

ω

=

= How do these look for 
simple harmonic motion?

These are the speed and acceleration of the particle in the medium not of the wave.
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Example 16.4
A string is driven at a frequency of 5.00Hz.  The amplitude of the motion is 12.0cm, 
and the wave speed is 20.0m/s.  Determine the angular frequency ω and angular 
wave number k for this wave, and write and expression for the wave function.

Using frequency, the angular frequency is 

Thus the general expression of the wave function is 

Angular wave number k is

sradf /4.3100.522
2

=⋅==
Τ

= ππ
π

ω

mrad
vv

f
vT

k /57.1
0.20
4.31222

======
ωππ

λ
π

( ) ( )txtkxAy 4.3157.1sin120.0sin −=−= ω
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Rate of Energy Transfer by Sinusoidal Waves on Strings
Waves traveling through medium carries energy.

When an external source performs work on the string, the energy enters into the 
string and propagates through the medium as wave.

What is the potential energy of one wave length of a traveling wave? 
∆x, ∆m Elastic potential energy of a particle in a simple harmonic motion 2

2
1

kyU =

Since ω2=k/m 2

2
1

ymU 2= ω The energy ∆U of the segment ∆m is 22

2
1

2
1

yxymU 22 ∆=∆=∆ ωµω

As ∆xà0, the energy ∆U becomes dxydU 2

2
1 2= µω

Using the wave function,the energy is ( )dxtkxAdU ωµω −= 2 22 sin
2
1

For the wave at t=0, the potential 
energy in one wave length, λ, is 

λµω
λ
π

µω

µωµω

λ

λλ

λ

2

0

2

0

2

0

22

4
14

sin
4
1

2
1

2
1

2
2cos1

2
1

sin
2
1

A
x

k
xA

dx
kx

AkxdxAU

x

x

x

x

x

x

2
=

=

2

=

=

2=

=

2

=



 −=

−
== ∫∫

Recall k=2π/λ
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Rate of Energy Transfer by Sinusoidal Waves cont’d
How does the kinetic energy of each segment of the string in the wave look?

Since the vertical speed of the particle is 

As ∆xà0, the energy ∆K becomes ( )dxtkxAdK ωµω −= 2 22 cos
2
1

For the wave at t=0, the kinetic 
energy in one wave length, λ, is 

λµω
λ
π

µω

µωµω

λ

λλ

λ

2

0

2

0

2

0

22

4
14

sin
4
1

2
1

2
1

2
2cos1

2
1

cos
2
1

A
x

k
xA

dx
kx

AkxdxAK

x

x

x

x

x

x

2
=

=

2

=

=

2=

=

2

=



 +=

+
== ∫∫

Recall k=2π/λ

( )tkxAvy ωω −−= cos

The kinetic energy, ∆K, of 
the segment ∆m is

( )tkxAxmvK y ωωµ −∆=∆=∆ 2222 cos
2
1

2
1

Just like harmonic oscillation, the total 
mechanical energy in one wave length, λ, is λµωλλλ

2

2
1

AKUE 2=+=

As the wave moves along the string, the 
amount of energy passes by a given point 
changes during one period.  So the power, 
the rate of energy transfer becomes vA

T
A

t
E

P

2

2

2
1

2
1

2

2

=

=
∆

=

µω

λ
µωλ P of any sinusoidal wave is 

proportion to the square of 
angular frequency, the square 
of amplitude, density of 
medium, and wave speed.
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Example 16.5
A taut string for which µ=5.00x10-2 kg/m is under a tension of 80.0N.  How 
much power must be supplied to the string to generate sinusoidal waves at a 
frequency of 60.0Hz and an amplitude of 6.00cm?

The speed of the wave is

Since the rate of energy transfer is

sm
T

v /0.40
1000.5
0.80

2 =
×

== −µ

Using the frequency, angular frequency ω is

sradf /3770.6022
2

=⋅==
Τ

= ππ
π

ω

( ) ( ) ( ) W

vA
t

E
P

5120.4006.03771000.5
2
1

2
1

222

2

=×××××=

=
∆

=

−

2µωλ



Good luck with your exams!!!

You all have done very well!!!

Have a safe and fun-filled summer!!!


