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Lecture #24

Dr. Jaehoon Yu

Review of Chap. 1 - 15

Final Exam at 5:30pm, Monday, May 6 (covers Ch 1- 16).




2-dim Motion Under Constant Acceleration
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Example 2.12

A stone was thrown straight upward at t=0 with +20.0m/s initial velocity on the roof
of a 50.0m high building,
Find the time the stone reaches at maximum height (v=0) 0=-9.80m/s?
Find the maximum height
Find the time the stone reaches its original height
Find the velocity of the stone when it reaches its original height
5. Find the velocity and position of the stone at t=5.00s

> e

ﬂ‘vf — Vs - at = +20.0- 9.80t = 0.00

t= @ =2.04s
9.80

2 “yf =y +Vyit+%ayt2

=50.0+20° 2.04+%' (-9.80)" (2.04)°

3|lt=2.04" 2=4.08s =50.0+ 20.4 = 70.4(m)

4 |[we =wi +at = 20.0+ (- 9.80)" 4.08=- 20.0(m/ s)

Vyt = Vyi + ayt 1., .
- yr = Yi+ Wit + —ayt o
fmlocity = 20.0+ (- 9.80) " 5.00 2 2-POSI
= - 29 O(m / S) =50.0+20.0" 5.00 +E' (-9.80)° (5.00)2 = +27.5(m)
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Uniform Circular Motion

« A motion with a constant speed on a circular path.

— The velocity of the object changes, because the direction
changes

— Therefore, there is an acceleration

Iy
( r s
V]

V. Angle

Is Dq

Vi

The acceleration pulls the object inward: Centripetal Acceleration

Average
Acceleration

—

Instantaneous
Acceleration
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_vi-vVvi _ Dv ‘DG‘ ‘Dr‘ ‘DF‘ oy ‘Dr‘
_tf- i_Dt q = y = r ‘Dv‘—vr— a—ar—
~__prly 2| Isthiscorrect in

a, = lim a=lim ——=—=v" —==-—[ dimension?

What story is this expression telling you?
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Relative Velocity and Acceleration

The velocity and acceleration in two different frames of
references can be denoted:

- r'=r- vt
& Frame S 4 Frame S’ Galilean N N
Vo transformation |dr’_dr =
[ . = -V
_ equation dt  dt
| ’r’ - V=V - V,
O vt O What does this tell you?
F' = F - \7; t <IE§: The accelerations measured in two frames are the
- — — same when the frames move at a constant velocity
dv' _dv dy, with respect to each other!!!
at dt dt ) — — :
— = . The earth’s gravitational acceleration is the same in
a'= a,when v, is constant a frame moving at a constant velocity wrt the earth.
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Example 4.9

A boat heading due north with a speed 10.0km/h Is crossing the river whose
stream has a uniform speed of 5.00km/h due east. Determine the velocity of
the boat seen by the observer on the bank.

N Vgg = Vgr TV,
—_ — |2 —2 5 >
Ver | = +/[Ver | +|Va| =+/@0.0) + (5.00)% =11 .2km /h
V — Y — U

R " Vge =10.0 jand v, =5.00 i
. 0 0
Vo, =5.00+10.0 j

vV &g, O

VBR BB q = tan '1§ 5 T = tan '18@—00 9= 2 .6°
> [ Vs @ el0.0 g

How long would It take for
the boat to cross the river if
the width is 3.0km?

Vg €COS( - t = 3.0km

£ = 30 _ 3.0
Vgg COSq  11.2° cos(26.6°

) =0.30hrs=18min
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1st Law:
Law of Inertia

2nd [ aw:
Law of Forces

AF -ms

Newton's Laws

In the absence of external forces, an object at rest
remains at rest and an object in motion continues
In motion with a constant velocity.

The acceleration of an object Is directly proportional to
the net force exerted on it and inversely proportional to
the object’s mass.

3d Law:
Law of Action
and Reaction

If two objects interact, the force, F,,, exerted on object 1
by object 2 Is equal magnitude to and opposite direction
to the force, F,,, exerted on object 1 by object 2.

May. 1, 2002
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Applications of Newton'’s Laws

Suppose you are pulling a box on frictionless ice, using a rope.

5

A

Free-body
diagram

F,=Mg

If T Is a constant
force, a,, IS constant

May. 1, 2002

What are the forces being
exerted on the box?

Gravitational force: Fg
Normal force: n

Tension force: T

o §‘—|

Total force: 4 F =T=Ma,_ a,
F=F,+n+T=T 8 F F +n=0 a
v, =v, +at=v, + &Y

eM g
Dx = X, - X, = v, t+ 1—88T—9t2
2eM g
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Example 5.4

A traffic light weighing 125 N hangs from a cable tied to two other cables
fastened to a support. The upper cables make angles of 37.0° and 53.0°

with the horizontal. Find the tension in the three cables.

e

37° 53°

May. 1, 2002

Free-body
Diagram

F=T,+T,+T,; F, =@ T,=0; F, =3 T, =0

T,sin (37 <)+ 7, sin (53 ) = 0
- T,cos (37 ° )+ T, cos (53°)= 0

_ cos (53°) _
T, = po— (37 AT, =0.74 T,

Tz[sin (53°)+ 0.754 ~ dgn (37 °)]=1.25T2 =125 N
T,=100 N; T, =0.754 T, = 75 .4N

[N
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Example 5.12

Suppose a block is placed on a rough surface inclined relative to the horizontal. The
Inclination angle Is increased till the block starts to move. Show that by measuring
this critical angle, g, one can determine coefficient of static friction, m.

y

n
Free-body fsfm(n F=Ma

. - X
Diagram
UB\F: -Mg

F
F,=Ma,=n+F =0; n=-F  =Mgcosq,
F.=F,- =0, f,=mn=Mgsnq,
Mgsing, _ Mgsing, - tang,

n Mg cosq,

May. 1, 2002 1443-501 Spring 2002
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Example 6.8

A ball of mass m is attached to the end of a cord of length R. The ball is moving in a

vertical circle. Determine the tension of the cord at any instant when the speed of
the ball is v and the cord makes an angle g with vertical.

What are the forces involved in this motion?

m The gravitational force F and the
T radial force, T, providing tension.
RO[™ |4 Fr=ma, =mg sing
a, = gsnq
o V2
a F, =T- mg cosq :mar:mﬁ

2

T = m§8\%+ g cos ¢

Q-0

At what angles the tension becomes maximum and minimum. What are the tension?

May. 1, 2002 1443-501 Spring 2002 11
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Example 6.11

A small ball of mass 2.00g is released from rest in a large vessel filled with oll,
where it experiences a resistive force proportional to its speed. The ball reaches a
terminal speed of 5.00 cm/s. Determine the time constant t and the time it takes the
ball to reach 90% of its terminal speed.

Determine the
time constant t.

V
my

Determine the time It takes
the ball to reach 90% of its
terminal speed.

May. 1, 2002

Vt:@
b
. -3 2
\ b:mg _200 10,kg_>?.80m/s = 0.302kg /s
v, 5.00° 10 °m/s
. -3
( =M_200 107Kg _5 449035
b 0.392kg /s
_M @ o H0-y@. X0
V= EretgEvid-e o
—v@-e A0
0.9v, vtgi et s
@ e'%g: 0.9; e/ =01
t=-t ¥n0.1=2.30t =2.30>5.10 " 10" ° =11.7(ms)
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Work and Kinetic Energy

Work In physics Is done only when a sum of forces
exerted on an object made a motion to the object.

What does this mean? However much tired your arms feel, if you were
just holding an object without moving it you have

not done any physical work.

Mathematically, work is written in scalar product W= é E. »d =Fdcos

of force vector and the displacement vector

Kinetic Energy is the energy associated with motion and K = %m\/ 211 N.m=Joule
capacity to perform work. Work requires change of energy =
after the completion € Work-Kinetic energy theorem aW=K; - K =DK

Power is the rate of which work is performed. ||p - dW _= d (g): E

dt dt

Units of these quantities????
| ‘ Nm/s=Joule/s=Watt |
May. 1, 2002 1443-501 Spring 2002 3
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Example 7.14

A compact car has a mass of 800kg, and its efficiency is rated at 18%. Find the amount of
gasoline used to accelerate the car from rest to 27m/s (~60mi/h). Use the fact that the
energy equivalent of 1gal of gasoline is 1.3x108J.

First let's compute what the kinetic energy needed K, = 1 V2 = 1. 800" (27) =2.9" 10°J
to accelerate the car from rest to a speed v. 2

Since the engine is only 18% efficient we must

d|\(|dp the_necessary Igneﬂc energy with this W, =t = 1 2 = 2.9°10°J _ 16" 10°]
efficiency in order to figure out what the total e 2e 0.18
energy needed is.

Then using the fact that 1gal of gasoline can putout 1.3x108J, we can compute the

total volume of gasoline needed to accelerate the car to 60 mi/h.

W, 16~ 10°J
Vs =75 =— =0.012gal
1.3°10°J/gal 1.3 10°J/gal
May. 1, 2002 1443-501 Spring 2002 14
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Potential Energy

Energy associated with a system of objects =»
Stored energy which has Potential or possibility

to work or to convert to kinetic energy

In order to describe potential energy, U,

What does this mean? .
a system must be defined.

The concept of potential energy can only be used under the special class of forces called,
conservative forces which results in principle of conservation of mechanical energy.

What other forms of energies in the universe?

Mechanical Energy | | Chemical Energy Biological Energy
Electromagnetic Energy Nuclear Energy
May. 1, 2002 1443-501 Spring 2002 15
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Gravitational Potential

Potential energy given to an object by gravitational field
In the system of Earth due to its height from the surface

When an object is falling, gravitational force, Mg, performs work on the
object, increasing its kinetic energy. The potential energy of an object at a
height y which is the potential to work is expressed as

.

U, =Fory=mal jpol §)=may| [U,° may
Work performed on the object V\/g =U. - U,
by the gravitational force as the

Vs brick goes from y. to y; Is: = Mgy - mgy; =- [ng

h‘; What does Work by the gravitational force as the brick
this mean? goes from y: to y; is negative of the change in

the system’s potential energy

May. 1, 2002 1443-501 Spring 2002 16
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Example 8.1

A bowler drops bowling ball of mass 7kg on his toe. Choosing floor level as y=0, estimate the
total work done on the ball by the gravitational force as the ball falls.

E Let's assume the top of the toe is 0.03m from the floor and the hand
(/){;‘/y\ was 0.5m above the floor.
5);‘;{;\4 Ui:mgy i:7,9'8,0'5:34'3‘]
®é§\\\\ U, =mgy ,=7  9.8° 0.03 =2.06
=) DU =-(QU ,-U,)=32.24J @30 J

b) Perform the same calculation using the top of the bowler’s head as the origin.

What has to change? First we must re-compute the positions of ball at the hand and of the toe.

Assuming the bowler’s height is 1.8m, the ball’s original position is —1.3m, and the toe is at -1.77m.

U . =mgy =7 9.8 (-1.3)=-89.2J
U,=mgy , =7 9.8 (-1.77)=-121 .47
DU =-(U,-U,)=32.2] @30J
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Elastic Potential Energy

Potential energy given to an object by a spring or an object with elasticity
In the system consists of the object and the spring without friction.

The force spring exerts on an object when it is E = - kx

distorted from its equilibrium by a distance X is s

Th_e work performed_on the W, = 1 o2 - 1 o2

object by the spring is 2 2

: : - o 1, >

The potential energy of this system Is U, ® Skx
What do you see from The work done on the object by the spring
the ab tions? depends only on the initial and final

¢ dbOve cquations: position of the distorted spring.

Where else did you see this trend? || The gravitational potential energy, U,

May. 1, 2002 1443-501 Spring 2002 18
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Conservative and Non-conservative Forces

The work done on an object by the gravitational
force does not depend on the object’s path.

When directly falls, the work done on the object is Wg = mgh

| When sliding down the hill  [|Wy = Fy ingine | = Mg sing " |

mg g of length I, the work is =mg(l sing)= mgh
How about if we lengthen the incline by a Still the same V\Frngﬂ
factor of 2, keeping the height the same?? amount of work©

So the work done by the gravitational force on an object is independent on the path of
the object’s movements. It only depends on the difference of the object’s initial and
final position in the direction of the force.

e forc_:es like gravitational 1. If the work performed by the force does not depend on the path
or elastic forces are called ) [ S s oath s
conservative forces : the work performed on a closed path is 0.

May. 1, 2002 1443-501 Spring 2002 19
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Conservation of Mechanical Energy

Total mechanical energy is the sum of kinetic and potential energies ||E ° K +U

Ah g
i

hy

Let’s consider a brick What is its potential energy?

of mass m at a height
h from the ground

U, =mgh

What happens to the energy as
the brick falls to the ground?

DU=U,-U, :-C‘SFde

The brick gains speed By how much? v =gt

So what? || The brick’s kinetic energy increased | |K = =nmwv? = %mg %t

The lost potential energy is converted to kinetic energy

What does
this mean?

May. 1, 2002

The total mechanical energy of a system remains

constant in any isolated system of objects that E =5
Interacts only through conservative forces: K +éU_ =K, +é_Uf
|

Principle of mechanical energy conservation

20
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Example 8.3

A ball of mass m is attached to a light cord of length L, making up a pendulum. The ball is

released from rest when the cord makes an angle g, with the vertical, and the pivoting point
P is frictionless. Find the speed of the ball when it is at the lowest point, B.

Compute the poten_tial energy h=L- Lcosq,
at the maximum height, h. U = 1 (1 )
Remember where the 0 is.  ~ Mgt \1- €054,
K. +U, =K,k +U,
Using th_e principle of mgh = mgL (- cos q,)= 1.2
mechanical energy 2
conservation vi=12gL (L- cos g,)
N v=+29g (@- cos q,)
b) Determine tension T at the point B.
V2
Recall the centripetal [|F, =ma, =T - mg = mT — -
c 0SS CnecC e resuitin
a_Cceleratlon_ of a ® V20 = L(l- COS )6 a simple situation. What
circular motion T=mgg+—==mcg + 9 9a = happens when the initial
g Lg € L g| |angleq,is0? T =mg

May. 1, 2002
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Linear Momentum
The principle of energy conservation can be used to solve
problems that are harder to solve just using Newton’s laws. It is
used to describe motion of an object or a system of objects.

A new concept of linear momentum can also be used to solve physical
problems, especially the problems involving collisions of objects.

Linear momentum of an object whose massism |[— 0 7
and is moving at a velocity v is defined as P~ mv
What can you tell from this 1. Momentum is a vector quantity.

definition about momentum?

2
3.
4

The heavier the object the higher the momentum
The higher the velocity the higher the momentum
Its unit is kg.m/s

What else can use see from the
definition? Do you see force?

May. 1, 2002
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Linear Mome

—

F = ddtp i ccllt )

ntum and Forces

What can we learn from this
Force-momentum relationship?

= The rate of the change of particle’s momentum is the same as the
net force exerted on it.

e  When net force is 0, the particle’s linear momentum is constant.

« [fanparticle is isolated, the particle experiences no net force,
therefore its momentum does not change and is conserved.

Something else we can do

with this relationship. What

do you think it is?

function of time.

The relationship can be used to study
the case where the mass changes as a

Can you think of a
few cases like this?

Motion of a meteorite

Trajectory a satellite

May. 1, 2002
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Conservation of Linear Momentum in a Two
Particle System

Consider a system with two particles that does not have any external
forces exerted on it. What is the impact of Newton’s 3" Law?

If particle#1 exerts force on particle #2, there must be another force that
the particle #2 exerts on #1 as the reaction force. Both the forces are
Internal forces and the net force in the SYSTEM is still 0.

Now how would the momenta Let say that the particle #1 has momentum

of these particles look like? p, and #2 has p, at some point of time.
Using momentum- _. dp. B d o,
force relationship Fa=— L and Fp = —2

And since net force
of this system is 0

dp2+dpl d (— —»)

S F Ft ,
arTretras et T TR

Therefore E + E = const | The total linear momentum of the system is conserved!!!

May. 1, 2002 1443-501 Spring 2002 24
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Example 9.5

A car of mass 1800kg stopped at a traffic light is rear-ended by a 900kg car, and
the two become entangled. If the lighter car was moving at 20.0m/s before the
collision what is the velocity of the entangled cars after the collision?

Before collision The momenta before and after the collision are

: m — - - -
» %@ P; = MV +M,Vai =M, Voi
@ 0.0m/s _ . . .
1 P =myvir +myvzr = (m +m, v,

Since momentum of the system must be conserved

After collision

Pi = Py

(m1+m2)\7f = mz\_;Zi

V. = m, V2 _ 900 20 .01 6 67im/s
(m,+m,) 900 + 1800

What can we learn from these equations  The cars are moving in the same direction as the lighter

on the direction and magnitude of the car's original direction to conserve momentum.
velocity before and after the collision? The magnitude is inversely proportional to its own mass.
May. 1, 2002 1443-501 Spring 2002 25
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Elastic and Inelastic Collisions

Momentum is conserved in any collisions as long as external forces negligible.

Collisions are classified as elastic or inelastic by the conservation of kinetic
energy before and after the collisions.

EIaS_ti_C A collision in which the total kinetic energy is the same
Collision before and after the collision.

Inelf:lS_tiC A collision in which the total kinetic energy is not the same
Collision before and after the collision.

Two types of inelastic collisions:Perfectly inelastic and inelastic

Perfectly Inelastic: Two objects stick together after the

collision moving at a certain velocity together.
Inelastic: Colliding objects do not stick together after the collision

but some Kinetic energy is lost.

Note: Momentum is constant in all collisions but kinetic energy is only in elastic collisions.

May. 1, 2002 1443-501 Spring 2002 26
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Elastic and Perfectly Inelastic Collisions

In perfectly Inelastic c_o.IIisions, t.he objects stick leTa + sz—zi =(m, + mz)\Tf
together after the collision, moving together. .

Momentum is conserved in this collision, so the \Tf’ _my; TV,

final velocity of the stuck system is (m +m,)

How about elastic collisions?

In elastic collisions, both the
momentum and the kinetic energy
are conserved. Therefore, the final
speeds in an elastic collision can
be obtained in terms of initial
speeds as

mVvy, + MV, =MV MV,
i -, 1 -, 1 ., 1 5
Erqvli +§sz2i _Erqvlf +§sz2f

2 2

rnl(vli - Vi ): mz(szi - V22f)

rnl(vli - Vi )(Vli * Vi ): mz(Vzi - Vg )(V2i +V2f)

From1-dim momentum conservation:
WH(VJJ - Vlf) mz(V2| sz)

aeml &2 & 2m 0 Lam - m, 0
- g _Vll g _V2|
m +m, g m, +m, g
May. 1, 2002 1445 001 Spring 2002 27
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Example 9.9

Proton #1 with a speed 3.50x10° m/s collides elastically with proton #2 initially at
rest. After the collision, proton #1 moves at an angle of 37° to the horizontal axis
and proton #2 deflects at an angle f to the same axis. Find the final speeds of the

two protons and the scattering angle of proton #2, f .

M, Vi Since both the particles are protons m;=m,=m..
(m,) Using momentum conservation, one obtains
N m v, =m v, cosq + m_ Vv, cosf
/,@/\vq m,v,, sng - mv,,sinf =0
<‘\j f Canceling m; and put in all known quantities, one obtains

% v, cos37° +v,, cosf =3.50" 10° (1)

V; SIN37° =v,, sinf (2

From kinetic energy

conservation: Soning Eqs. 1.2 V.. - 28  10°m/s
650 10°F =i+, @) eguvallzgnsqf).ne gets [z D EIoomIE
’ f =53 .0°
May. 1, 2002 1443-501 Spring 2002 28
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Center of Mass of a Rigid Object

The formula for CM can be expanded to Rigid Object or a
system of many particles

(o)
m: V. m: Z
M, X, + M, X, + X M, X a mx a my a mz
XCM - = IO yCM - [o] ’ ZCM — Io
I'nl+m2+><><><+mn a.ml a.ml a.ml
i i i
The position vector of the | |7 = Xou ¥ You J* Za ko
center of mass of a many a mxil+ta my;j+a mzk g mr;
particle system is B 3 m ~ M
. . . 3 D _
A rigid body — an object with shape « oy a mi %
and size with mass spread throughout - M
the body, ordinary objects — can be 34 Dm, x,
considered as a group of particles with | |x., = lim — = OXxdm
mass m. densely spread throughout A
the given shape of the object - 1 .-
Fem = —— OI’ dm
May. 1, 2002 1443-501 Spring 2002 M 29
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Example 9.13

Show that the center of mass of a rod of mass M and length L lies in midway
between its ends, assuming the rod has a uniform mass per unit length.
A L The formula for CM of a continuous object Is
< _ 1 x=L g
XCM —_ VQZO xXam
< » d:\ Since the density of the rod is constant, one can write
dm= dx l[dm =1 dx; where | =M /L
7 W X=IL . .
Therefore |[x.,, = 1 (‘5‘L| wix = = €1, U _ igell 129- iéael v 8= L&
M %= M8 H, M& g ME& g 2

Find the CM when the density of the rod non-uniform but varies linearly as a function of x, | =a x

= A gk = & B R BN SN U )
M = Q., | dx = Q., axdx Xeu _VQ=0 | xdx —Von axdx —Vggax HX=O
z X=L
=Sacl =lae | |iig o 1@y 0.2
g2 H., 2 eSS
May. 1, 2002 —————Eepr—Tvn -
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Motion of a Group of Particles

We've learned that the CM of a system can represent the motion of a system.
Therefore, for an isolated system of many particles in which the total mass M is

preserved, the velocity, total momentum, acceleration of the system are

— o -
. = drem d el o -0 1o dri a mVi
Velocity of the system | |Vem = = mrit=—g m =
J ) MT T dem dMT T A M M
Total Momentum - - é mi\7. o - o —
of the system P =MVew =M =o—=a mvi=a p
Acceleration of o dvev d 2l o o0 1 3 m dvi am a
M = = i Vi+=— =
the system T Td  deM Ty MY T M
External force exerting | o = _ = _o = dp,, || What about the
on the system A Mg T Mam =g mai = ot internal forces?
it net external force is 0 | |8 F_ =0=9Pw. 5 = cong | [ SYStEM'S momentum
= t IS conserved.

May. 1, 2002
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Angular Displacement, Velocity, and Acceleration

Using what we have learned in the previous slide, how Dq =q. - g,
would you define the angular displacement? f :

— q - q
How about the average angular speed? wo L= b Js
t, -t Dt
_ o1:.Dg _do
And the instantaneous angular speed? W | M —
peo Dt dt
By the same token, the average angular | |5 o Wi = Wi _ Dw
acceleration t, -t Dt
And the instantaneous angular q © | Dw dW
acceleration? [!Kgo] ot

When rotating about a fixed axis, every particle on a rigid object rotates through

the same angle and has the same angular speed and angular acceleration.
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Rotational Kinematics

The first type of motion we have learned in linear kinematics was
under a constant acceleration. We will learn about the rotational
motion under constant acceleration, because these are the simplest

motions in both cases.

Just like the case In linear motion, one can obtain

Angular Speed under constant
angular acceleration:

Angular displacement under
constant angular acceleration:

One can also obtain

W, =w. +at

d; =q; tw;t +%at2

sz :Wi2+2a(qf - (;

)
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Example 10.1

A wheel rotates with a constant angular acceleration pf 3.50 rad/s?. If
the angular speed of the wheel is 2.00 rad/s at t,=0, a) through what

angle does the wheel rotate in 2.00s?

Using the angular displacement

q¢ - di =wt+%at2

formula in the previous slide, one gets  |= 2.00 - 2.00 + %3_50 " (2.0
=11.0rad = grev .=1.75rev.
2p
What is the angular speed at t=2.00s? [[w; =w; +at
. =2.00+3.50" 2.00
Using the angular speed and Iy
acceleration relationship wrrz—s

Find the angle through which the wheel
rotates between t=2.00 s and t=3.00 s.

May. 1, 2002

1443-501 Spring 2

g, =2.00" 3.00 + %3.50’ (3.00 ) = 21 .8rad

Dg =q,- q, =10.8rad :Ere\/.:l.nre\/.

2p
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Rotational Energy

What do you think the kinetic energy of a rigid object
that is undergoing a circular motion is?

Kinetic energy of a masslet, m;,
moving at a tangential speed, v;, Is

1, 1 ,
K. ==mv’ ==mr°w
| Zm | Zm |

Since a rigid body is a collection of masslets, - _lag 5,0
= K == mrw’ ==¢cgq mr’w’
the total kinetic energy of the rigid object is Ke al‘ K 2? I zg"?l i -

By defining a new quantity called, | = é mnz The above expression
Moment of Inertia, I, as i IS simplified as

L
K=o W

What are the dimension and unit of Moment of Inertia? kgxrf “\/I EJ

What do you think the Measure of resistance of an object to
moment of inertia is? changes in its rotational motion.

What similarity do you see between  Mass and speed in linear kinetic energy are
rotational and linear kinetic energies? replaced by moment of inertia and angular speed.
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Example 10.4

In a system consists of four small spheres as shown in the figure, assuming the radii are
negligible and the rods connecting the particles are massless, compute the moment of
Inertia and the rotational kinetic energy when the system rotates about the y-axis at w.

y . e .
), Since the rotation is about y axis, the moment of
Inertia about y axis, 1,, is
b y
Q- | | O | =8 mr2=MI2+MI2+mx0%+m>0? = 2M| 2
O b X i
Why are some 0s? This Is because the rotation is done about y axis,
M) y " and the radii of the spheres are negligible.

1 1
Thus, the rotational kinetic energy is  |Kg = 5 lw? = E(ZMI 2)NZ = MI*w*

Find the moment of inertia and rotational kinetic energy when the system rotates on
the x-y plane about the z-axis that goes through the origin O.

=8 =M M mo? =21 ) = w2 =2 oM+ 2t = (Wi + e
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Calculation of Moments of Inertia

Moments of inertia for large objects can be computed, if we assume

the object consists of small volume elements with mass, Dm..
: : _ : T Q 2 — N2
The moment of inertia for the large rigid object | = lim & £"Dm =g “dm
[
It Is sometimes easier to compute moments of inertia in terms of volume of the elements
rather than their mass

Using the volume density, r, replace . _dm . _ The moments of — N2
dm in the above equation with dV. =Ty Inertia becomes | Crr av

Example 10.5: Find the moment of inertia of a uniform hoop of mass M and radius R
about an axis perpendicular to the plane of the hoop and passing through its center.

&y The moment | = ¢r?dm=R?¢dm= MR’
of inertia IS

The moment of inertia for this
object is the same as that of a
point of mass M at the distance R.

X What do you notice
from this result?
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Example 10.6

Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an
axis perpendicular to the rod and passing through its center of mass.

M
y The line density of the rod is =T
so the masslet is dm=| dx:%dx
- M M &l u'°
W Th? mc_)m_ent | = A 2dm = 6_/2 dez_ix3g
r of inertia is WL L& H.,
_M&g elold_Ma0 ML
3L E20 & 254 BLE45 12
2 z L
What is the moment of inertia | = ¢y*dm = 5> LM dx = '\c % x3§
when the rotational axis is at y y L2 °
) = —|(L ¥ = |_3 =
one end of the rod A (L) 3|_( ) 3

Will this be the same as the above. Since the moment of inertia is resistance to motion, it makes perfect sense

Why or why not?

for it to be harder to move when it is rotating about the axis at one end.

May. 1, 2002
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Parallel Axis Theorem

Moments of inertia for highly symmetric object is relatively easy if the
rotational axis is the same as the axis of symmetry. However if the axis of
rotation does not coincide with axis of symmetry, the calculation can still be

done in simple manner using parallel-axis theorem. | =1, +MD’
y
A Moment of inertia is defined 1 =¢r*dm= C\NXZ +y2)dm (1)
(xy)  Sincexandyare X=Xy, +X; Y=VYeut+Y
24 One can substitute x and y in Eq. 1 to obtain
> _ 2 2
- | _CKXCM +X‘) +(yCM +yl) Jdm
3 e - o . 2yl
EA N 5 )éM +y(23M Cdm+2>Q:|v| C\dem+2yCM Cy'dm'i'e(xl +y“am
- > o jx'dm = 0
y  Since the X and y" are the ox am =
le Xom . g distance from CM, by definition cy'dm =0
X Therefore, the parallel-axis theorem | =1y +MD?
What does this Moment of inertia of any object about any arbitrary axis are the same as
theorem tell you? the sum of moment of inertia for a rotation about the CM and that of the

CM about the rotation axis.



Example 10.8

Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an
axis that goes through one end of the rod, using parallel-axis theorem.

y The line density of the rod is | :MT
so the masslet is dm=| dx:%dx
cm  OX 5 , L/2
w The moment of | = & 2dm = (\)“2 XM o =Mel sl
< r inertia about Wz L L& H
the CM M %_ .3 - .3 \ ) 5

Using the parallel axis theorem | =1, +D°M =

¢ : +
12 e2g 12 4

The result is the same as using the definition of moment of inertia.

Parallel-axis theorem is useful to compute moment of inertia of a rotation of a

rigid object with complicated shape about an arbitrary axis
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Torque

Torque is the tendency of a force to rotate an object about some axis.
Torque, t, Is a vector guantity.

Consider an object pivoting about the point P
by the force F being exerted at a distance r.

Lineof  The line that extends out of the tail of the force
Action  yector is called the line of action.

d T 3 The perpendicular distance from the pivoting point

Moment P to the line of action is called Moment arm.
arm

Magnitude of torque Is defined as the product of the force
exerted on the object to rotate it and the moment arm.

t °rFsinf =Fd

o
When there are more than one force being exerted on certain a t =t . +1 5
points of the object, one can sum up the torque generated by each

force vectorially. The convention for sign of the torque is positive if = Fd - F2d2

rotation is in counter-clockwise and negative if clockwise.
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Torque & Angular Acceleration

F, Let's consider a point object with mass m rotating in a circle.

77 D U What forces do you see in this motion?
[
\ . .
.l i ) The tangential force F, and radial force F,
\\\ p The tangential force F is F =ma =nmra
7

The torque due to tangential force F,is ~ t =Fr =mar =nr‘a

What do you see from the above relationship? t =la

What does this mean? Torque acting on a particle is proportional to the angular acceleration.

What law do you see from this relationship? ~ Analogs to Newton's 2" law of motion in rotation.

How aboutarigid object?  The external tangential force dF, is dF, = dma, = dmra

dF
dm  Thetorque due to tangential force Fiis  dt =dRr = (rzdm)a
r The total torqueis gt =a¢r’dm=la
What is the contribution due Contribution from radial force is 0, because its
@) dial f d whv? line of action passes through the pivoting
May. 1, 2002 to radial force and w y: 2  point, making the moment arm 0.
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Example 10.10

A uniform rod of length L and mass M is attached at one end to a frictionless pivot and is

free to rotate about the pivot in the vertical plane. The rod is released from rest in the

horizontal position what is the initial angular acceleration of the rod and the initial linear
acceleration of its right end?

/2 The only force generating torque is the gravitational force Mg
L L
{ :Fd :FE:MQE: Ia
v Mg )
e X \ 2

Since the moment of inertia of the rod | = @erdm: @LX2| dx:@ 92& 3 _ML
when it rotates about one end is eLa@dpy 3

We obtain Using the relationship between tangential and

angular acceleration
__MgL_ Mgl _3g )

I M2~ 2L _ 39 What does this mean?
T = La _E The tip of the rod falls faster than
an object undergoing a free fall.
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Work, Power, and Energy in Rotation

F Let's consider a motion of a rigid body with a single external
force F exerted on the point P, moving the object by ds.
The work done by the force F as the object rotates

through infinitesimal distance ds=rdq in a time dt is
dW = F>ds = (F sinf )rdq
What is Fsinf ?  The tangential component of force F.

What is the work done by Zero, because it is perpendicular to the
radial component Fcosf ?  displacement.

Since the magnitude of torque is rFsinf,  dW =tdg
_dW _tdg _ How was the power

The rate of work, or power becomes P i dt W defined in linear motion?
The rotational work done by an external force o { =g = aed_w O_ | alw Getlq 0
equals the change in rotational energy. &dt g 8dq ;Fe dt g

The work put in by the external force then

Jd o w

W= tdg =¢

May. 1, 2002 asrspd QAN =Q
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Similarity Between Linear and Rotational Motions

All physical quantities in linear and rotational motions show striking similarity.

Similar Quantity Linear Rotational
Mass Mass M Moment of Inertia
| = ¢r*dm
Length of motion | Distance L Angle g (Radian)
Speed "= w s G
Acceleration 2 = g 2 = G
Force Force F=ma |Torque t =la
Work Work W =g’ Fox Work W =Q'tda
Power P=F » P=tw
Momentum p=my L=1w
Kinetic Energy | Kinetic * =™ * |Rotational k= =5'w"
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Rolling Motion of a Rigid Body

What is a rolling motion? A more generalized case of a motion where the
rotational axis moves together with the object

A rotational motion about the moving axis

To simplify the discussion, let's 1.  Limit our discussion on very symmetric
make a few assumptions objects, such as cylinders, spheres, etc

2. The object rolls on a flat surface

Let's consider a cylinder rolling without slipping on a flat surface

Under what condition does this “Pure Rolling” happen?

P The total linear distance the CM of the cylinder moved is

s=Hy
RE .
S Thus the linear Vo = dS: ﬂ =Rw
> speed ofthe CMis M (it at
s=Rq
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Total Kinetic Energy of a Rolling Body

What do you think the total kinetic Since it is a rotational motion about the point
energy of the rolling cylinder is? P, we can writ the total kinetic energy
of 2v> K = 1 | w2 Where, I, is the moment of
CM - P . . )
e 2 Inertia about the point P.
>Vom Using the parallel axis theorem, we can rewrite
1 1 1
ZEIPWZ ZEICMWZ +§MR2VV2
Since vgy=Rw, the above K 1 v
relationship can be rewritten as M
What does this equa’[ion mean? Rotational kinetic Translational Kinetic
energy about the CM energy of the CM
Total kinetic energy of a rolling motion is the sum
of the rotational kinetic energy about the CM And the translational
May. 1, 2002 1443-501 Spring 2002 kinetic of the CM 47
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Example 11.1

For solid sphere as shown in the figure, calculate the linear speed of the CM at the
bottom of the hill and the magnitude of linear acceleration of the CM.

What must we know first? The moment of inertia the
sphere with respect to the CM!!

|y = (‘)"de:EMR2

Thus using the formula in the previous slide

Vem
2 gh 2 gh /10
Vey = g - = \/ g = _gh
1+ 1., /MR 1+2/5 4
Since h=xsinq 2 10 : Using kinematic 2
. ' Vo, = —0gx sin . : Vo = 28y X
one obtains M 7 9 k relationship M M
The linear acceleration Vi, _5 dn What do you see?
of the CM is M = oy 7 I | Uinear acceleration of a sphere does

not depend on anything but g and g
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Torque and Vector Product

Let’s consider a disk fixed onto the origin O and
the force F exerts on the point p. What happens?

t=rxF

The disk will start rotating counter clockwise about the Z axis
> Y The magnitude of torque given to the disk by the force F is

F t = Frsinf
But torque is a vector quantity, what is the direction? - - —
How is torque expressed mathematically? ’[ 0 I F

What is the direction?  The direction of the torque follows the right-hand rule!!

The above quantity is called C°A B

Vector product or Cross product ‘5 ‘ = ‘K’ 5‘ - ‘Kug‘sin q

What is the result of a vector product?  What is another vector operation we've learned?

Another vector Scalar product  C © AXB = ‘AHB‘cosq

May. 1, 2002 1443-501 Spring 2002
Dr. J. Yu, Lecture #24 Result? A scalar



Angular Momentum of a Particle

If you grab onto a pole while running, your body will rotate about the pole, gaining
angular momentum. We've used linear momentum to solve physical problems
with linear motions, angular momentum will do the same for rotational motions.

‘ Let's consider a point-like object ( particle) with mass m located

at the vector location r and moving with linear velocity v

L=rxp

—

The instantaneous angular momentum |— 9 oo
L of this particle relative to origin O is L r P

>y
What is the unit and dimension of angular momentum?  kgprt/s’

Note that L depends on origin O. Why?  Because r changes
What else do you learn?  The direction of L is +z
Since p is mv, the magnitude of L becomes L = mvr sin f

P

What do you learn from this?  If the direction of linear velocity points to the origin of
rotation, the particle does not have any angular momentum.

l)hgep?r:gﬁtglhas If the linear velocity is perpendicular to position vector, the
May.1,2000 particle moves exactly the same way as a point on a rim.
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Angular Momentum and Torgue

Can you remember how net force exerting on a particle o — d E

and the change of its linear momentum are related? a k= dt

Total external forces exerting on a particle is the same as the change of its linear momentum.

The same analogy works in rotational motion between torque and angular momentum.

o —_—

Net torque acting on a particle is |3 ¢ =~ § - dp

dt

_dl 5): = ﬁ:@ - dp
dt 5 dt dt
N

Why does this work? ~ Because v is parallel to
the linear momentum

=T

Thus the torque-angular o —~ _d L
momentum relationship at-= ot

The net torque acting on a particle is the same as the time rate change of its angular momentum

vidy. L, £UUZ L TUTIUVL UMIITIY LUV ol
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Example 11.4

A particle of mass m is moving in the xy plane in a circular path of radius r and linear
velocity v about the origin O. Find the magnitude and direction of angular momentum
with respect to O.

y 4 Using the definition of angular momentum
V —_ —_ —_ —_ —_ —_ —_
r L=r" p=r"mv=mr_v
> Since both the vectors, r and v, are on x-y plane and
O X using right-hand rule, the direction of the angular
momentum vector is +z (coming out of the screen)

The magnitude of the angular momentum is ‘E‘ =|mr” V| = mrvsinf = mrvsin90° = mrv

So the angular momentum vector can be expressedas | = mrvk

Find the angular momentum in terms of angular velocity w.

Using the relationship between linear and angular speed

L =mrvk = mrawk = mr?w = |w
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Example 11.6

A rigid rod of mass M and length | pivoted without friction at its center. Two particles of mass
m, and m, are connected to its ends. The combination rotates in a vertical plane with an

angular speed of w. Find an expression for the magnitude of the angular momentum.

y 4 The moment of inertia of this system IS
1 1
2 | =1ty + 1, = =MIZ+= mlI2+ m,| *
I 2 12 4
\ q> mz : | 2 oo O 2
> wl“ & 0
0 =—¢cM+m+m = | = jw="8EM +m +m, =
/ X 4 &3 a Q m, -
m, . . . .
i Find an expression for the magnitude of the angular acceleration of the
m; g system when the rod makes an angle g with the horizon.
If m, =m,, no angular First compute net  t, =m,g I—cosq; t,=-m,g I—cosq
momentum because net external torque 2
torque is 0. (=t +t, =900 (m, - m,)
If g=+/- p/2, at equilibrium 2
1
S0 no angular momentum. Thus a L 8t _ E(ml- m, )gl cos g _ 2(m, - m,)cosq .
May. 1. 2002 becomes L M +m,+m, M +m e m,
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Example 11.8

A start rotates with a period of 30days about an axis through its center. After the star
undergoes a supernova explosion, the stellar core, which had a radius of 1.0x10%km, collapses
into a neutron start of radius 3.0km. Determine the period of rotation of the neutron star.

The period will be significantly shorter,
because its radius got smaller.

1. There is no torque acting on it
2. The shape remains spherical
3. Its mass remains constant
L

What is your guess about the answer?

Let's make some assumptions:

Using angular momentum i f
conservation lw, =1 ,w,
W = 2p
The angular speed of the star with the period T is B T
2
Thus  w, = Wi mriz 2P
|, mr; T,

&’ 0 o
T, =P =clip =8 39 0 55406 =27 10 *days = 0.23s
W, re = el.0" 10" g
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Conditions for Equilibrium

What do you think does the term “An object is at its equilibrium” mean?

The object is either at rest (Static Equilibrium) or its center of mass
IS moving with a constant velocity (Dynamic Equilibrium).

When do you think an object is at its equilibrium?
o —
Translational Equilibrium: Equilibrium in linear motion @ F=0

Is this it?  The above condition is sufficient for a point-like particle to be at its static
equilibrium. However for object with size this is not sufficient. One more
condition is needed. What is it?

Let's consider two forces equal magnitude but opposite direction acting
on a rigid object as shown in the figure. What do you think will happen?

al
The object will rotate about the CM. The nettorque 2 +* _

acting on the object about any axis must be 0. a

For an object to be at its static equilibrium, the object should not

h I I d
ave linear or angular speed.  y, =0 w=0
May. 1, 2002 1443-501 Spring 2002 CM
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More on Conditions for Equilibrium

To simplify the problems, we will only deal with forces acting on x-y plane, giving torque
only along z-axis. What do you think the conditions for equilibrium be in this case?

The six possible equations from the two vector equations turns to three equations.

éE:O é.Fx:O é{:O étzzo
aF, =0

What happens if there are many forces exerting on the object?

If an object Is at its translational static equilibrium, and if the
net torque acting on the object is 0 about one axis, the net
torque must be 0 about any arbitrary axis.

Net Force exerting on the object A F=Fi+F2+F3+x=0

al

Net torque about O to=r1" Fi+rs” Fa+rs Fs+xe=3ri” Fi =0
Position of force F;about 0" 7. =y, . p

Net torque about O' - §¢ o =1, Futrs” Fobmecfa- 1 Futlro- 1) Fobme g Fi- 1" & F
ar Fi-r0=3to=0 56
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Example 12.1

A uniform 40.0 N board supports a father and daughter weighing 800 N and 350 N,
respectively. If the support (or fulcrum) is under the center of gravity of the board and
the father is 1.00 m from CoG, what is the magnitude of normal force n exerted on the

board by the support?

Since there is no linear motion, this system
IS in its translational equilibrium

a F =0

é. Fy,=Mzg+M.g+Myg-n=0
Therefore the magnitude of the normal force N =40.0+800+350=119(N

Determine where the child should sit to balance the system.
The net torque about the fulcrum ¢ = pg .9>0+M _g31.00- M, g>x=0
by the three forces are

_ 800

Therefore to balancc_e the system = Mcg 1 00mM = === x4 .00m = 2.29m
the daughter must sit M,g 350
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Example 12.1 Continued

Rotational axis Determine the position of the child to balance the
\.\ system for different position of axis of rotation.

The net torque about the axis of
rotation by all the forces are

t =M_g>x/2+M_g>(1.00+x/2)- n>x/2- M ,g>x/2=0

Since the normal forceis N=Mgg+M.g+M,g
The net torque can t :MBg>x/2+I\/IFg>(1.OO+x/2)

be rewritten - (M_,g+M_g+M_g)xx/2- M gxx/2
=M:gx.00- M;g>x=0 What do we learn?
Therefore X = Me 94 X.00m _ 820 X.00m=2.29m No matter where the
M_g 350 rotation axis is, net effect of
May. 1, 2002 1443-501 Spring 2002 the torque is identical.
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Example 12.3

A uniform horizontal beam with a length of 8.00m and a weight of 200N is attached to a walll
by a pin connection. Its far end is supported by a cable that makes an angle of 53.0° with the
horizontal. If 600N person stands 2.00m from the wall, find the tension in the cable, as well as
the magnitude and direction of the force exerted by the wall on the beam.

- R XK First the translational equilibrium,
500N | ¥200N using components
==
- ‘ A F, =Rcogy - Tcos530° =0
= 53.09 Rsing Tsin53 o _ _
o a F, =Rsinqg +Tsin53.0° - 600N - 200N =0
g > Rcosq €0s53 y
8m
o) - . iy ) , ) —
From the rotational equilibrium ~ @t =1 Sin>30 8.00- 600N™2.00- 200N >4.00m=0
T =313N
Using the Rcogy =T cos53.0° And the magnitude of R is
randlationa] RSN =~ TSiN530"+600N +200N Too$30 313 cos530
i a800- 313 SiN530° & R= = . =98N
equilibrium ¢ = g2 @809- 313 SNS30 0_ 4, 4. cogy cos711
313c0s530°
May. 1, 2002 1443-501 Spring 2002 5
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Example 12.4

A uniform ladder of length | and weight mg=50 N rests against a smooth, vertical wall. If

the coefficient of static friction between the ladder and the ground is m=0.40, find the
minimum angle g,,;, at which the ladder does not slip.

P First the translational equilibrium,
using components

A F, =f-P=0
‘n mg a

0¥ éFy:-mg”‘:O

Thus, the normal force is n=mg =50N

The maximum static friction force

just before slipping is, therefore, fi =mn=0.4" 50N =20N =P

: _— I :
From the rotational equilibrium ato=- Mg COYpy, * Plsing,,, =0
= o T 0= g 0= 5
e2Pg e40N g
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Example 12.7

A solid brass sphere is initially under normal atmospheric pressure of 1.0x10°N/m2. The
sphere is lowered into the ocean to a depth at which the pressures is 2.0x10°N/m?. The

volume of the sphere in air is 0.5m3. By how much its volume change once the sphere is
submerged?

DP
DV
Vi
DPV.

The amount of volume changeis DV = - —

From table 12.1, bulk modulus of brass is 6.1x10% N/m?

The pressure change DPis DP =P, - P =2.0" 10" - 1.0" 10° » 2.0 10’

Since bulk modulusis B = -

Therefore the resulting ~ 207107 0.5 _ s a4 3
volume change DV is DV =V, -V, =- 6.1 102 =-16 10"m
The volume has decreased.
May. 1, 2002 1443-501 Spring 2002 61

Dr. J. Yu, Lecture #24



The Pendulum

A simple pendulum also performs periodic motion.

The net force exerted on the bob Is
(o)
aF =T-mgcosq, =0

o) _ : _ _ d’s
aFt_-rnganA_ma_mdtz
Since the arc length, s,is s=Lq,

d’s . dqg _

: d? :
e L e =-gsing |results ) dt? = - %smq

Again became a second degree differential equation,

satisfying conditions for simple harmonic motion
2

d7g 9

dt2 L

g =-w?g giving angular frequency w = %

If g is very small, sing~q

2 L '
The period for this motionis T == 2p \P The period only depends on the
w g length of the string and the

gravitational acceleration
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Physical Pendulum

Physical pendulum is an object that oscillates about a fixed
axis which does not go through the object’s center of mass.

X

CAN:
dsing A

Consider a rigid body pivoted at a point O that is a distance d from the CM.
i The magnitude of the net torque provided by the gravity is

ét =-mgd sinq

Then ét =la =1 dq =-mgd sing
mg dt®
: 2
Therefore, one can rewrite d c2| __mg sng » - ge‘ngd % =-wxy
dt e |l o
Thus, the angular frequency wis = |99

By measuring the period of
And the period for this motionis T =

physical pendulum, one can
2P _op |1 measure moment of inertia.
W mgd
May. 1, 2002
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Example 13.6

A uniform rod of mass M and length L is pivoted about one end and oscillates in a vertical
plane. Find the period of oscillation if the amplitude of the motion is small.

O Moment of inertia of a uniform rod, 1 5
Pivot . . | = —ML
rotating about the axis at one end is 3

The distance d from the pivot to the CM is L/2,
therefore the period of this physical pendulum is

2
" Mgd 3MgL 39

Calculate the period of a meter stick that is pivot about one end and is oscillating in
a vertical plane.

Since L=1m [2L [ 2 So the 1
C T=2 — =2 —  =1.64s . ——=0. 1
the period is P 39 V308 frequency is f - 0.61s
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Simple Harmonic and Uniform Circular Motions

Uniform circular motion can be understood as a
superposition of two simple harmonic motions in x and y axis.

y4 y X.AJ?I P
// -1 \\ // //
/ A P // y \ // A \\
/
I /(\1 l | I \d,
i 0 > 1T 0l x>y ' Olve oy ' 0 >
\ /AR Q \ «Qy \ Q
\ / \ / \ / \ /
\\ // _\\~’// \\~’// \\~'//
t=0 = g=wit+f
When the particle rotates at a uniform angular x = Acosq = Acos(wt +f )
speed w, x and y coordinate position become y = Asing = Asin (wt +f )
Since the linear velocity in a uniform circular v, =-vsing =- Awsin(wt +f )
motion is Aw;, the velocity components are v, = +vcosq = Aw coswt +f )
— — 2
Since the radial acceleration in a uniform circular @ = - 2€05q = - Aw? cos(wt +f )
motion is v&/A=w?A, the components are a, =-asing =- Aw’sin (wt +f )
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Example 13.7

A particle rotates counterclockwise in a circle of radius 3.00m with a constant angular
speed of 8.00 rad/s. At t=0, the particle has an x coordinate of 2.00m and is moving to
the right. A) Determine the x coordinate as a function of time.

Since the radius is 3.00m, the amplitude of oscillation in x direction is 3.00m. And the
angular frequency is 8.00rad/s. Therefore the equation of motion in x direction is

x = Acosq = (3.00m)cos(8.00t +f )

Since x=2.00, whent=0  2.00 = (3.00m)cosf ; f = cos 18@9— 48.2°

e3.00 g
However, since the particle was

moving to the right f =-48.2°, = (3'00 m)COS(8'OOt ' 48'20)

Find the x components of the particle’s velocity and acceleration at any time t.

Using the = B __ (3 00,8,00)sin(8.00t - 482)=(- 240m/g)sinfB.0at- 482)
displcement dt

Likewise, dv

from velocity &= g =( 240800)codB 0 - 482 = (- 1921/ ?)codg 00t - 482)
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Damped Oscillation

More realistic oscillation where an oscillating object loses its mechanical
energy in time by a retarding force such as friction or air resistance.

o]

a F,=-k<-bv=ma,

Let’s consider a system whose retarding force

IS air resistance R=-bv (b is called damping - b dx = d?®x
coefficient) and restoration force is -kx T T
The solution for the above 2" order b,

differential equation is X = Ae 2m COS(Wt +f )
The angular frequency w W = k @b 92

for this motion is “\m me g

This equation of motion tells us that when the retarding force is much smaller than restoration
force, the system oscillates but the amplitude decreases, and ultimately, the oscillation stops.

We express the , @b o Where the natural _ |k
angular frequency as &2mg frequency w, m
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Free Fall Acceleration & Gravitational Force

Weight of an object with mass mis _gMem

mg. Using the force exerting on a RZ

particle of mass m on the surface of g =G M £

the Earth, one can get Re
What would the gravitational F =mg'=G Mem _ o _Mem :
acceleration be if the object is at ’ ! (Re +h)
an altitude h above the surface of _, _ G M .
the Earth? L (R. +h)

What do these tell us about the gravitational acceleration?

*The gravitational acceleration is independent of the mass of the object

*The gravitational acceleration decreases as the altitude increases

o/f the distance from the surface of the Earth gets infinitely large, the weight of the
object approaches 0.
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Example 14.2

The international space station is designed to operate at an altitude of 350km. When
completed, it will have a weight (measured on the surface of the Earth) of 4.22x10°N.
What is its weight when in its orbit?

The total weight of the station on the surface of the Earth is
Mcm
2
RE

F.=mg =G =422 10°N

Since the orbit is at 350km above the surface of the Earth,
the gravitational force at that height is

M_m R2
Fo=mg'=G—F— = E__F
A S N YN A

Therefore the weight in the orbit is
R _ (6.37" 10°)
|:o - 2 FE - , , 2
(R. +h) (6.37" 10° +3.50" 10°)
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Example 14.3

Using the fact that g=9.80m/s? at the Earth’s surface, find the average density of the Earth.

Since the gravitational acceleration is

M s an-n1 M
g=G—£=6.67"10"—5
R: Re
- 2
So the mass of the Earth is M = R-“g
E
G
Therefore the density of the R.*g
Earth is r—ME— G _ 39
Ve 4_|ORE3 4pGR.
3
37 9.80

; ——— ——=5.50" 10°kg / m°
4p~ 6.67° 101" 6.37° 10
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The Law of Gravity and the Motion of Planets

*Newton assumed that the law of gravitation applies the same
whether it is on the Moon or the apple on the surface of the Earth.

*The Interacting bodies are assumed to be point like particles.

----- Newton predicted that the ratio of the Moon’s
acceleration a,, to the apple’s acceleration g would be

AppI Moon
2 : 6
M_1/r aeREg 6.37" 108__275 -
(1/R.Y ng z gs 84" 10
; Therefore the centripetal acceleration of the Moon, a,, Is

a, =2.75° 10" 9.80=2.70" 10"°m/ s’

Newton also calculated the Moon's orbital acceleration a,, from the knowledge of its distance
from the Earth and its orbital period, T=27.32 days=2.36x106s

- vZ _ (201, /T) _4p?r, _4p? 3847 10° _ 0 757 103/ 2 5 280
4 T 2.36" 10° (60)°

M My

This means that the Moon'’s distance is about 60 times that of the Earth’s radius, its acceleration

Is reduced by the square of the ratio. This proves that the inverse square law is valid.
Dr. J. Yu, Lecture #24



Kepler's Third Law
It is crucial to show that Keper’s third law can be predicted from the
Inverse square law for circular orbits.

Since the gravitational force exerted by the Sun is radially
directed toward the Sun to keep the planet circle, we can
apply Newton'’s second law

GM M, M v
r° r

2

\ / . . . . . 2
\ 7 Since the orbital speed, v, of the planet with period Tis v = %
N 7 2
T The above can be writen ™ SZM » M p(2pr/T)
r r
i ae ae
Solving forT. 4p ° =K.a® and K.= 4p ° 2-2097"10°°s2/m?
one can obtain gGM <0 GM , 5

This is Keper's third law. It's also valid for ellipse for r being the length of the
semi-major axis. The constant K, is independent of mass of the planet.
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Kepler's Second Law and Angular Momentum Conservation

Consider a planet of mass M, moving around the Sun in an elliptical orbit.

— EE D S e o,

Do~ RN Since the gravitational force acting on the planet is
/ r — A always toward radial direction, it is a central force
'\ r/ g Therefore the torque acting on the planet by this

\C 4 _ 7 force is always 0.

- - —_ -
-_— e s -

t=r  F=r" Ff=0
Since torque is the time rate change of angular dL
momentum L, the angular momentum is constant. t =——=0; L =const

Because the gravitational force exertedona =~ — - — -, - .
planet by the Sun results in no torque, the L=r p=r M oV = M oV =const
angular momentum L of the planet is constant.

Since the area swept by the -, -1 _ L dA L _
motion of the planet is ' th‘ = Wpdt |:> G 2M : = const

da= [ dr|=
2

This is Keper's second law which states that the radius vector from the Sun
to a planet sweeps our equal areas in equal time intervals.
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More on The Gravitational Potential Energy

Since the gravitational force is a radial force, it only performed work while the
path was radial direction only. Therefore, the work performed by the gravitational

force that depends on the position becomes

dW = F xdr = F (r)dr % %999 e w

Therefore the potential energy is the
negative change of work in the path

DU =U, - U,

- L . GM
Since the Earth’s gravitational forceis ~ F(r)=- M

r.2

So the potential energy Ji GM cm

' U.-U = dr = - GM
function becomes m2iTQ 2 @

Since potential energy only matters for differences, by taking the

Infinite distance as the initial point of the potential energy, we get
For any two _ Gmm, The energy nee;ded For many
: 5 - - to take the particles :
particles” R ey particles?
May. 1, 2002 1443-501 Spring 2002
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Energy in Planetary and Satellite Motions

Consider an object of mass m moving at a speed
\ Vv near a massive object of mass M (M>>m).

\ What's the E=K+U =£mv2- GMm
total energy? 2 r

/ Systems like Sun and Earth or Earth and Moon whose motions
\ , are contained within a closed orbit is called Bound Systems.

N e
~ -~

T For a system to be bound, the total energy must be negative.

Assuming a circular orbit, in order for the object to be kept in GM .-m V2
the orbit the gravitational force must provide the radial > —=MmMa=m—
acceleration. Therefore from Newton’s second law of motion r r

, _GMcm
2r

Therefore the total GMm Since the gravitational

mechanicalenergy E =K +U = - Iotrcle s Cﬁns‘?r\’f‘“\’e’ the]c
of the SyStem S 2r Otal mechanical energy o

the system is conserved.
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Example 14.7

The space shuttle releases a 470kg communication satellite while in an orbit that is
280km above the surface of the Earth. A rocket engine on the satellite boosts it into a
geosynchronous orbit, which is an orbit in which the satellite stays directly over a single
location on the Earth, How much energy did the engine have to provide?

What is the radius of the geosynchronous orbit? T =1day =8.64" 10”s

. 4p * .
From Keplers 3¢law T2 = K.rg, WhereKcis Ke = GISI =9.897 10 *s*/m*

E
Therefore the 8 64 10 _ (8_64, 104)2 Cdos 107
geosynchronous radius Is fos 989 10 14 989 10 #

Because the initial position v = R_ +280° 10°m=6.65" 10°m
before the boost is 280km | =

The total energy needed to _ GM me&el 190
boost the satellite at the DE=- > e " r ;
geosynchronous radius is the " s
difference of the total energy =~ &87 10~ 598 10 47088 1 - 1 921197 10°)
before and after the boost 2 €4.23°10° 665 10°g
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v=0ath=r Escape Speed

Consider an object of mass m is projected vertically from the surface of
the Earth with an initial speed v, and eventually comes to stop v,=0 at

the distance r.,.

Because the total E-K+U=Lmz. SMem_ GM m
energy is conserved 2 R, r.
Solving the above equation 21 1 6
for v;, one obtains Vv, = \/ 2GM Eé - T
RE Mex @
Therefore if the initial speed v, is known one can use V2R2
[ E

i ' ' i h=r_ - R
this formula to compute the final height h of the object. max =T 2GM , - VIR,

In order for the object to escape 2GM _ \/2, 667 10-“ 598 10%
) H H N V@c = = -
Earth’s gravitational field completely, N/ R, 637 10°

the initial speed needs to be

=1.12° 10*m /s =11.2km / s

This is called the escape speed. This formula is How does this depend  Independent of

valid for any planet or large mass objects. on the mass of the the mass of the

May. 1, 2002 1443-501 Spring 20 €Scaping object? escaping object
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Fluid and Pressure

What are the three states of matter? Solid, Liquid, and Gas

By the time it takes for a particular substance to
change its shape in reaction to external forces.

How do you distinguish them?

What is a fluid? A collection of molecules that are randomly arranged and loosely

bound by forces between them or by the external container

We will first learn about mechanics of fluid at rest, fluid statics.

In what way do you think fluid exerts stress on the object submerged in it?

Fluid cannot exert shearing or tensile stress. Thus, the only force the fluid exerts

on an object immersed in it is the forces perpendicular to the surfaces of the object.
This force by the fluid on an object usually is expressed in the form of bo F

(0]

the force on a unit area at the given depth, the pressure, defined as A

Expression of pressure for an dF Note that pressure is a scalar quantity because it's

infinitesimal area dA by the force dF is - a the magnitude of the force on a surface area A.
What is the unit and Unit:N/m? Special Sl unit for 0 2
dimension of pressure? | | pim.: [M][L4][T-4 | pressure is Pascal 1Pa © AN /m
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Pascal's Law and Hydraulics

A change in the pressure applied to a fluid is transmitted undiminished
to every point of the fluid and to the walls of the container.

P =P, +rgh Whathappensif P,s changed?

The resultant pressure P at any given depth h increases as much as the change in P,..

This is the principle behind hydraulic pressure. How?

Therefore, the resultant force F,is F, =

This seems to violate some kind
of conservation law, doesn't it?

May. 1, 2002

- A Since the pressure change caused by the E F
di'l':l A, B = d, the force F, applied on to the area A, IS P = Ai = Ai
FZT transmitted to the F, on an area A,

A In other words, the force get multiplied by
—=F, the ratio of the areas A,/A, is transmitted
to the F, on an area.

No, the actual displaced volume of the F = d, -
fluid is the same. And the work done 27yt

by the forces are still the same.
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Example 15.4

Water is filled to a height H behind a dam of width w. Determine the resultant
force exerted by the water on the dam.

Since the water pressure varies as a function of depth, we
will have to do some calculus to figure out the total force.

The pressure at the depth h is
P=rgh=rg(H - y)

The infinitesimal force dF exerting on a small strip of dam dy is
dF = PdA =rg(H - y)wdy

Therefore the total force exerted by the water on the damis

5
‘u\\y'

=l é 1 07" 1
E= ~alH- viwdy =raSHy- =v24 =2, gH2
ygrg( y Jwdy 0gHY zytly=0 10
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Buoyant Forces and Archimedes’ Principle

Why is it so hard to put a beach ball under water while a piece of small
steel sinks in the water?

The water exerts force on an object immersed in the water.
This force is called Buoyant force.

How does the The magnitude of the buoyant force always equals the weight of
Buoyant force work? the fluid in the volume displaced by the submerged object.

This is called, Archimedes’ principle. What does this mean?

Let's consider a cube whose height is h and is filled with fluid and at its
equilibrium. Then the weight Mg is balanced by the buoyant force B.

B=F, =Mg And the pressure at the bottom of the
9

s cube is larger than the top by r gh.
3 Therefore, DP =B/ A=rgh

B=DPA=rghA =rVg Wh_ere Mg is the_
B=F, =rVg = Mg weight of the fluid.
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Example 15.5

Archimedes was asked to determine the purity of the gold used in the crown.
The legend says that he solved this problem by weighing the crown in air and
In water. Suppose the scale read 7.84N in air and 6.86N in water. What
should he have to tell the king about the purity of the gold in the crown?

In the air the tension exerted by the scale on _
the object is the weight of the crown T - g 7.84N

In the water the tension exerted T
by the scale on the object is water

Therefore the buoyant force B is B=T, - T« =0.98N
Since the buoyant force B is B=r ng — rW g = 098N

=mg - B=6.86N

The volume of the displaced 098N 098
water by the crown is Ve Vu = =100 08 ¥ 10"*m’
Therefore the density of ;

. YO L om _mo _784_ 784 oo 030y
the crown is V., Vg Vg 10710 938

Since the density of pure gold is 19.3x10%kg/m3, this crown is either not made of pure gold or hollow.
I, J. TU, LECWUIE H44



Superposition and Interference

If two or more traveling waves are moving through a Superposition
medium, the resultant wave function at any point is the Principle
algebraic sum of the wave functions of the individual waves.

The waves that follow this principle are called linear waves which in general have
small amplitudes. The ones that don’t are nonlinear waves with larger amplitudes.

Thus, one can write the

n
o
: =V, +VY, +XF Yy = _
resultant wave function as Y=Y17Y Yn iezll Yi
Two traveling linear waves can pass through each other without being destroyed or altered.

What do you think will happen to the water

They will pass right through each other.
waves when you throw two stones on the pond? ywitp J J

The shape of wave will
change=> Interference

Constructive interference: The amplitude increases when the waves meet

What happens to the waves at the point where they meet?

Destructive interference: The amplitude decreases when the waves meet
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Speed of Waves on Strings

How do we determine the speed of a transverse pulse traveling on a string?

If a string under tension is pulled sideways and released, the tension is responsible for
accelerating a particular segment of the string back to the equilibrium position.

So what happens when the tension increases? The acceleration of the
particular segment increases
Which means? The speed of the wave increases.

Now what happens when the mass per unit length of the string increases?

For the given tension, acceleration decreases, so the wave speed decreases.

Which law does this hypothesis based on? | Newton’s second law of motion

Based on the hypothesis we have laid out T T: Tension on the string
above, we can construct a hypothetical . m Unit mass per length
formula for the speed of wave

Is the above expression dimensionally sound? |~ T=[MLT], n¥[ML"]

- (T/n)1/2:[L2T-2]1/2:[LT-1]
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Speed of Waves on Strings cont'd

+—V Let's consider a pulse moving to right and look at it
. Fii g In the frame that moves along with the the pulse.
T NY /T e .
ﬂ(:g/ Since in the reference frame moves with the pulse, 2
v the segment is moving to the left with the speed v, a = v
0 and the centripetal acceleration of the segment is R

Q —_ _—
Now what do the force components | @ Ft=T¢osq - Tcosq =0
o

look in this motion when ¢ is small? a F. =2Tsing » 2Tq

What is the mass of the segmentwhen | m = nDs = mR2g = 2nRq
the line density of the string is n?

Using the radial o V2 V&
force component aF =ma= mE = 2mMRq R = 2Tq

Therefore the speed of the pulseis v = |1
m
May. 1, 2002 1443-501 Spring 2002 a5
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Example 16.2

A uniform cord has a mass of 0.300kg and a length of 6.00m. The cord passes over a
pulley and supports a 2.00kg object. Find the speed of a pulse traveling along this cord.

5.00m Since the speed of wave on a string with line v = T
10om density mand under the tension T is m
M=200kg  The line density mis m= oésggr:g =5.00" 10""kg /m

The tension on the string is

provided by the weight of the T =Mg=2.00" 9.80=196kg>m/ &

object. Therefore
Thus the speed of the wave Is

V= I:\/ 1?'6 — =19.8m/s
5.00" 10
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Reflection and Transmission

A pulse or a wave undergoes various changes when the medium
It travels changes.

Depending on how rigid the support is, two radically different reflection
patterns can be observed.

1. The support is rigidly fixed: The reflected pulse will be inverted to the
original due to the force exerted on to the string by the support in
reaction to the force on the support due to the pulse on the string.

2. The support is freely moving: The reflected pulse will maintain the original
shape but moving in the reverse direction.

If the boundary Is intermediate between the above two extremes, part of the
pulse reflects, and the other undergoes transmission, passing through the
boundary and propagating in the new medium.

When a wave pulse travels from medium A to B:
e V>V (or m<my), the pulse is inverted upon reflection.
e V,<Vg(or m>m), the pulse is not inverted upon reflection.
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Sinusoidal Waves

Equation of motion of a simple harmonic oscillation is a sine function.

But it does not travel. Now how does wave form look like when the wave travels?
—A

The function describing the position of . .
particles, located at x, of the medium y :@nge? P xg M
through which the sinusoidal wave is e@‘z** Wave Length
traveling can be written at t=0

The wave form of the wave traveling at the y = Asin 882p (x - Wt )9
speed v in +x at any given time t becomes

By definition, the speed of | Thus the wave L6 ot clJ
wave in terms of wave length | V = — | form can be y=As né2pg,— —

and period T is T | rewritten g e T EH
Defining, angular 2 2 The wave form ., _ A
wave numberkand K °© l—p W = ?p becomes y = Asin(kx- wt)
angular frequency w, .

1 Wae ol _w Gemerdl oy - agin(lc- wt +f )
Frequency,f, o _ 1 croed v V=—2=— yaveform
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Example 16.3

A sinusoidal wave traveling in the positive x direction has an amplitude of 15.0cm, a wavelength
of 40.0cm, and a frequency of 8.00Hz. The vertical displacement of the medium at t=0 and x=0
is also 15.0cm. a) Find the angular wave number k, period T, angular frequency w, and speed v
of the wave.

Using the definition, angular wave number kis k= 2|p = 0220 =5.00p =15.7rad /' m

. _1_ _ Angular _2p _
T="=_—""_=0.125sC =2pf =50.3rad /s
Period Is f 8.00 frequency is [ -

Using period and wave length, the wave speed is y = I =1 f =0.400° 8.00 =3.2m/s
T

b) Determine the phase constant f , and write a general expression of the wave function.

At x=0 and t=0, y=15.0cm, therefore ¥ =0.150s n(f )=0.150
the phase f becomes dnf =1 f =P

Thus the general

wave funcion s ¥ = Asin(kc- wt +f ) =0.150s n8’15 7x- 503t + 2.9

2;71
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Sinusoidal Waves on Strings

Let’s consider the case where a string is attached to an arm undergoing a simple
harmonic oscillation. The trains of waves generated by the motion will travel through the
string, causing the particles in the string to undergo simple harmonic motion on y-axis.

If the wave att=0is Y= ASin?I—p X2 What does thismean? | f =0

%]

The wave function can be written Y = Asin(kx- wt)

This wave function describes the vertical motion of any point on the string at any time t.
Therefore, we can use this function to obtain transverse speed, v,, and acceleration, a,.

_dy Ty _ _ -
VV_E —ﬁ—-WACOS(kX-Wt) ay_d—ty —W—-szsm(kx—vvt)

Xconst xconst

These are the speed and acceleration of the particle in the medium not of the wave.

The rlnaxtl_mumfiﬁeed alncli theth Vy max = WA How do these look for
accg eration o - € par 'C_e nthe —W2A simple harmonic motion?
medium at position x attime tare Gy, max =W
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Example 16.4

A string is driven at a frequency of 5.00Hz. The amplitude of the motion is 12.0cm,
and the wave speed is 20.0m/s. Determine the angular frequency w and angular
wave number k for this wave, and write and expression for the wave function.

Using frequency, the angular frequency is

W = Z?p = 2pf = 2p %5.00 = 31.4rad / s

Angular wave number Kk is

k:2|o 4D el W :31'3:1.57rad/m

I VT V V

Thus the general expression of the wave function is

y = Asin(kx- wt) = 0.120sin(1.57x- 31.4t)
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Rate of Energy Transfer by Sinusoidal Waves on Strings

Waves traveling through medium carries energy.

When an external source performs work on the string, the energy enters into the
string and propagates through the medium as wave.

What is the potential energy of one wave length of a traveling wave?

D% DM Flastic potential energy of a particle in a simple harmonic motion Y =5k

: . 1 1
Since w2=k/m u =%mvv2y2 The energy DU of the segment Dm is DU =5 Dmwv?y? :EnD«/vzy2
du =1ﬂW2 2dx
As Dx—2>0, the energy DU becomes > WY
Using the wave function,the energy is dU = % mw?A?sin?(kx - wt )dx
For the wave at t=0, the potential U, = -1 anAZQ sin? kxdx = = nw?A? (5; 1- cos2kx g,
energy in one wave length, | , is 2 i 2 ) 2
1 o B el 4pXU = 2 w2 A2
Recall k=2p/] B2 B
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Rate of Energy Transfer by Sinusoidal Waves cont’c

How does the kinetic energy of each segment of the string in the wave look?

Since the vertical speed of the particle is v, = - WACOS(kX- Wt)
The kinetic energy, DK, of pk = 1 Dmv2 = 1 mDxw 2 A2 cos? (kx - wt)
the segment Dm is 2 2

1
As Dx-=>0, the energy DK becomes dK = 5 mw® A cos” (kx - wt )dx

For the wave at t=0, the kinetic K, = =Lhw AZQ cos? kxdx = = w2 A? (5; L+ COS2KX 4
energy in one wave length, | , is z 2 _ 2
1 5,06l 4pXU 2
- =—nw Az X+ = rrw ° A7
Recall k=2pl/I 5 & 4k | Hx i
Just like harmonic oscillation, the total 1,
mechanical energy in one wave length, | , is E =U, +K, = 2 mw A
As the wave moves along the string, the p= E _1 o I p of any sinusoidal wave is
amount of energy passes by a given point Dt 2 T  proportion to the square of
: - angular frequency, the square
changes during one period. So the power, _1 Y of amplitude, densiy of
the rate of energy transfer becomes 01 2 medium, and wave speed.
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Example 16.5

A taut string for which me5.00x10- kg/m is under a tension of 80.0N. How
much power must be supplied to the string to generate sinusoidal waves at a
frequency of 60.0Hz and an amplitude of 6.00cm?

The speed of the wave is Vv = I:\/ 8(,)'0 — =40.0m/s
m 5.00" 10

Using the frequency, angular frequency w s
W :2?'0 = 2pf = 2p x60.0 = 377rad / s

Since the rate of energy transfer is

PZEZEH\NZAZV
Dt 2

% 5.00° 102" (377)°" (0.06)*" (40.0)=512W
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Congratulations!!!!

You all have done very well!!!

Good luck with your exams!!!

Have a safe and fun-filled summer!!!



