
PHYS 5326 - Lecture #3

Wednesday, Jan. 22, 2003 Dr. **Jae** Yu

- 1. How is neutrino beam produced?
- 2. Physics with neutrino experiments
- 3. Characteristics of accelerator based neutrino experiments

Neutrino Cross Sections

$$coupling \propto I_{weak}^{(3)}$$

$$coupling \propto I_{weak}^{(3)} - Q_{EM} \sin^2 \boldsymbol{q}_W$$

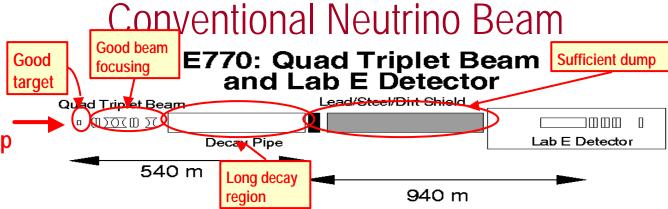
$$\frac{d^{2}\mathbf{s}}{dxdy} = \frac{2G_{F}ME}{\mathbf{p}} \left[\left(1 - y - \frac{Mxy}{2E} \right) F_{2}(x, Q^{2}) + \frac{y^{2}}{2} 2x F_{1}(x, Q^{2}) \right] \\ \pm y \left(1 - \frac{y}{2} \right) x F_{3}(x, Q^{2})$$

$$\mathbf{s_{nN}} / E_n \approx 0.68 \times 10^{-38} \text{ cm}^2 / \text{GeV}$$

$$\mathbf{s_{\bar{n}N}} / E_n \approx 0.35 \times 10^{-38} \text{ cm}^2 / \text{GeV}$$
Wednesday, Jan. 22, 2003

Physics With Neutrinos

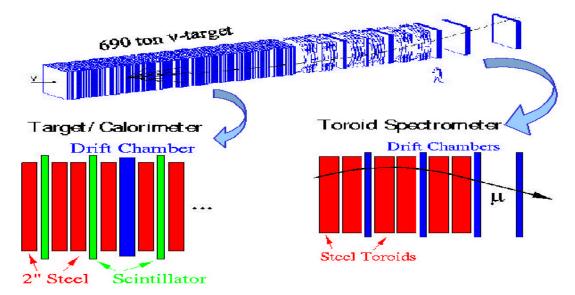
- Investigation of weak interaction regime
 - Only interact via weak interaction → This is why neutrinos are used to observe NC interactions
 - Measurement of weak mixing angle
 - Measurement of coupling strength e=gsin θ_{W}
 - Test for new mediators, such as heavy neutral IVBs
 - Measurement of SM ρ parameter
 - Indirect measurement of M_W : $\sin^2\theta_W = \rho(1-M_W^2/M_Z^2)$
- Measurement of proton structure functions
- Measurement of neutrino oscillations


Neutrino Experiments

- Neutrino cross sections are small ~10⁻³⁸ E_v
- To increase statistics
 - Increase number of neutrinos
 - Natural or reactor sources will not give you control of beam intensity
 - Need man-made neutrino beams
 - Increase neutrino energy
 - Increase thickness of material to interact with neutrinos → Detectors with dense material
- Beam can be made so that it is enriched with a specific flavors of neutrinos, such as v_{τ} s.
 - How does one do this?

Detector and Beam Requirements

- Beam and apparatus need to be determined by physics needs
- For weak mixing angle & structure function
 - Need large statistics → Accelerator based experiment with dense detector (target) needed
 - Good focusing of the secondary hadrons from the target
 - Wider energy range of neutrinos
 - Ability to distinguish CC and NC interactions
 - Tracks of leptons from CC interactions for PID
 - Precise momentum measurement of leptons
 - Precise measurement of hadronic shower energy
 - Finer longitudinal segmentation
 - Cosmic-ray veto



- Use large number of protons on target to produce many secondary hadrons (π , K, D, etc)
- Let π and K decay in-flight for ν_{μ} beam $\pi \rightarrow \mu + \nu_{\mu}$ (99.99%), K $\rightarrow \mu + \nu_{\mu}$ (63.5%)
- Other flavors of neutrinos are harder to make
- Let the beam go through shield and dirt to filter out μ and remaining hadrons, except for ν
 - Dominated by v_u

003

A Typical Neutrino Detector: NuTeV

- Calorimeter
 - 168 FE plates & 690tons
 - 84 Liquid Scintillator
 - 42 Drift chambers interspersed

- Solid Iron Toroid
 - Measures Muon momentum Δp/p~10%

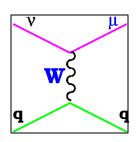
Wednesday, Jan. 22, 2003

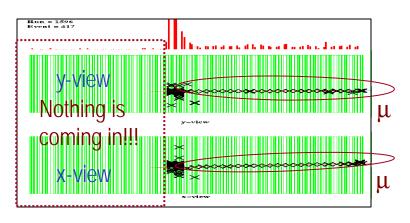
Continuous test beam for in-situ calibration

Jae Yu

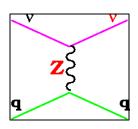
The NuTeV Detector

A picture from 1998. The detector has been dismantled to make room for other experiments, such as $D\varnothing$


Wednesday, Jan. 22, 2003

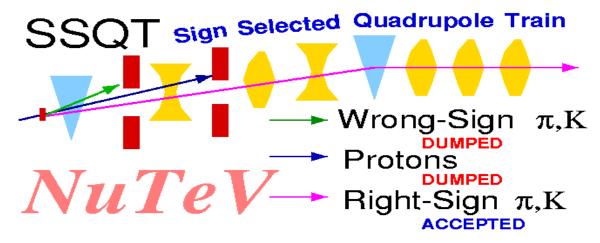


PHYS 5326, Spring 2003 Jae Yu

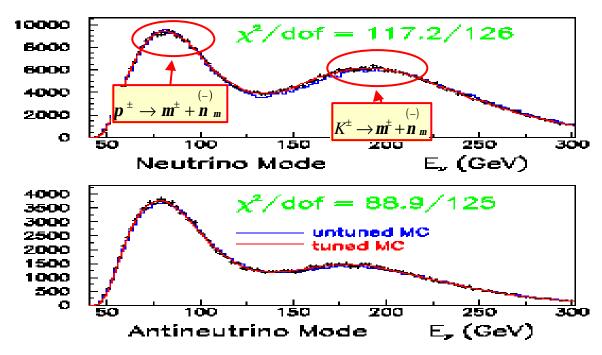

How Do Neutrino Events Look?

Charged Current Events

Neutral Current Events

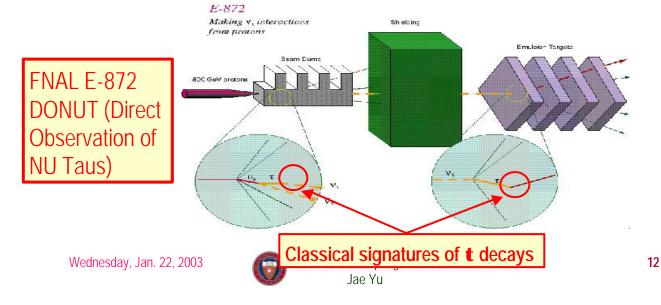


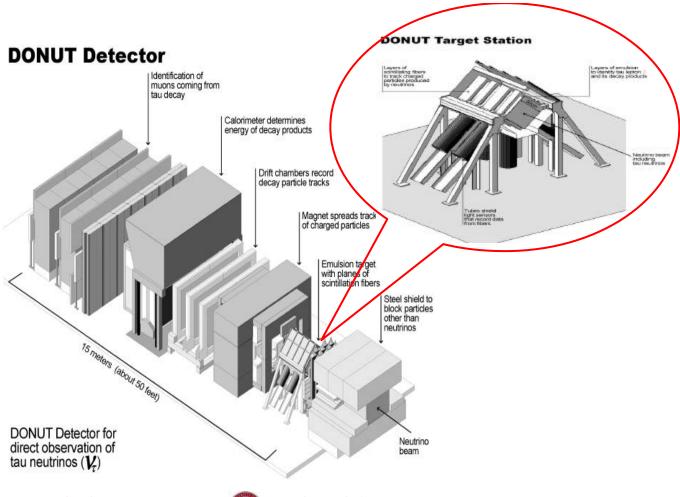
Wednesday, Jan. 22, 2003



How can we select sign of neutrinos?

- Neutrinos are electrically neutral
- Need to select the charge of the secondary hadrons from the proton interaction on target
- NuTeV experiment at Fermilab used a string of magnets called SSQT (Sign Selected Quadrupole Train)

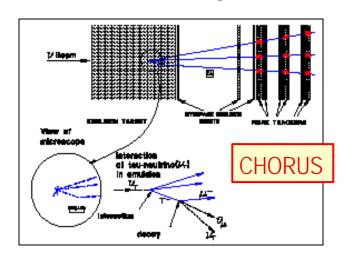

Neutrino Flux from NuTeV

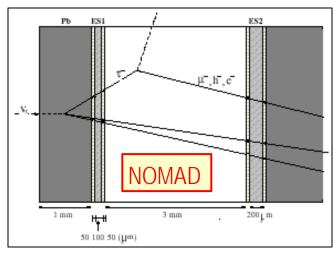


Two distinct peaks depending on the sources of neutrinos Total number of events after cuts: 1.62M ν & 350k $\overline{\nu}$

Neutrino Detector for \mathbf{v}_{τ} Observation

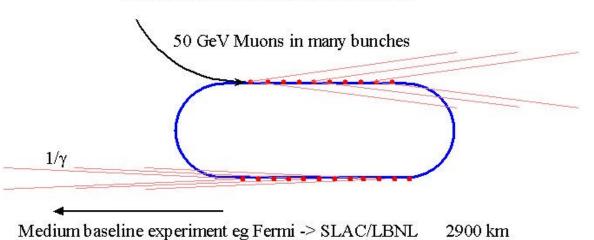
- Make an observation of ν_{τ} interaction with nucleon, producing τ in the target, decaying leptonically or hadronically
- Beam of v_{τ} is produced using $D_S \rightarrow \tau + v_{\tau}$ (~7%), $\tau \rightarrow h + v_{\tau} + K_L^0$ (one-prong decay, 49.5%), $\mu v_{\tau} v_{\mu}$ (17%), $e v_{\tau} v_{e}$ (17%)
- Large number of protons on target (10¹⁷ PoT \rightarrow 2x10¹² v_{τ} /m²)
- Precise detector to observe the kinks of τ decays (emulsion)




Wednesday, Jan. 22, 2003

Neutrino Detectors for $v_{\mu} \rightarrow v_{\tau}$ Oscillation

- Measure $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation, by observing ν_{τ} appearing at the detector far away from the source of the beam
- Beam of high flux v_{μ} is produced using π , K decays \rightarrow Use a magnet called horn to focus more hadrons
- Neutrino energies must be high enough to produce v_{τ}


Source of Cleaner Neutrino Beam

Muon storage ring can generate 10⁶ times higher flux and well understood, high purity neutrino beam → significant reduction in statistical uncertainty

But ν_{e} and ν_{u} from muon decays are in the beam at all times

→ Deadly for traditional heavy target detectors

Muon Storage Ring as a Neutrino Source

Wednesday, Jan. 22, 2003

Homework Assignments Compute the fraction of 200GeV π that decay in a 540m decay

- Compute the fraction of 200GeV π that decay in a 540m decay pipe and the probability of μ , resulting from π decays, surviving in the shield, assuming 940m dirt shield
 - Due: Wed., Jan. 29
- Pull the following Thumbnail files over to appropriate areas on hep.uta.edu (/scratch/phys5326/)
 - Due: 2 weeks from today, Wed., Feb. 5

Process	N _{events}	Directory	Name
W→em	200k	/wenu	Shahnoor
Z→ee	50k	/zee	Fajer
W→m	200k	/wmunu	Venkat
Z→ mm	50k	/wmumu	Barry

http://www-d0.fnal.gov/Run2Physics/wz/d0-private/wzskim/WZskim-em.html http://www-d0.fnal.gov/Run2Physics/wz/d0-private/wzskim/WZskim-mu.html