PHYS 5326 – Lecture #7

Monday, Feb. 10, 2003 Dr. <mark>Jae</mark> Yu

- 1. Improvements in $Sin^2 \theta_W$
- 2. Interpretation of $Sin^2\theta_W$ results
- 3. The link to Higgs

No class this Wednesday → Will make up on Fridays.

Monday, Feb. 10, 2003

PHYS 5326, Spring 2003 Jae Yu

1

٠

•

$$R^{n(\bar{n})} = \frac{S_{NC}^{n(\bar{n})}}{S_{CC}^{n(\bar{n})}} = ?^{2} \left(\frac{1}{2} - \sin^{2} ?_{W} + \frac{5}{9} \sin^{4} ?_{W} \left(1 + \frac{S_{CC}^{\bar{n}(n)}}{S_{CC}^{n(\bar{n})}} \right) \right)$$
Monday, Feb. 10, 2003
$$Monday, Feb. 10, 2003 \qquad PHYS 5326, Spring 2003 \qquad 2$$

Experimental Variable

$sin^2 \Theta_W$ Theoretical Uncertainty

 Significant correlated error from CC production of charm quark (m_c) modeled by slow rescaling mechanism

• Suggestion by Paschos-Wolfenstein by separating v and \overline{v} beams:

$$R^{-} = \frac{s_{NC}^{n} - s_{NC}^{\overline{n}}}{s_{CC}^{n} - s_{CC}^{\overline{n}}} = ?^{2} \left(\frac{1}{2} - \sin^{2}?_{W}\right) = \frac{R^{n} - R^{\overline{n}}}{1 - r}$$

→ Reduce charm CC production error by subtracting sea quark contributions

→Only valence u, d, and s contributes while sea quark contributions cancel out

5

 \rightarrow Massive quark production through Cabbio suppressed d_v quarks only

Monday, Feb. 10, 2003

PHYS 5326, Spring 2003 Jae Yu

Improving Experimental Uncertainties Electron neutrinos, $v_{e'}$ in the beam fakes NC events from CC

- Electron neutrinos, $\nu_{\rm e}$ in the beam fakes NC events from CC interactions
 - If the production cross section is well known, the effect will be smaller but since majority come from neutral K (K_L) whose x-sec is known only to 20%, this is a source of large experimental uncertainty
- Need to come up with a beamline that separates neutrinos from anti-neutrinos

Event Contamination and Backgrounds

•SHORT $\mathbf{n_m}$ CC's (20% \mathbf{n} , 10% \mathbf{n}) μ exit and rangeout •SHORT $\mathbf{n_e}$ CC's (5%) ν_e N \rightarrow eX •Cosmic Rays (0.9%)

•LONG nmNC's (0.7%) hadron shower punch-through effects

•Hard mBrem(0.2%) Deep μ events Monday, Feb. 10, 2003

Sources of experimental uncertainties kept small, through modeling using ${\bf m}$ and TB data

Effect	Size(d sin ² q _w)	Tools
Z _{vert}	0.001/inch	μ⁺μ⁻ events
X _{vert} & Y _{vert}	0.001	MC
Counter Noise	0.00035	TB μ's
Counter Efficiency	0.0002	ν events
Counter active area	0.0025/inch	νCC, TB
Hadron shower length	0.0015/cntr	TB π 's and k's
Energy scale	0.001/1%	ТВ
Muon Energy Deposit	0.004	νCC
Monday, Feb. 10, 2003	PHYS 5326, Spring 2003 Jae Yu	8

Measurements of v_e Flux

- Use well known processes (Ke3: $K^{\pm} \rightarrow p^{\circ} e^{\pm} \overset{(-)}{n_{e}}$) •
- Shower Shape Analysis can provide direct measurement v_{e} events, • though less precise

- v_e from very short events (E_v>180 GeV)
 - Precise measurement of v_e flux in the tail region of flux \rightarrow ~35% more \overline{v}_{e} in \overline{v} than predicted

Ja

• Had to require (E_{had}<180 GeV) due to ADC saturation

Results in $\sin^2\theta_w$ shifts by +0.002

Monday, Feb. 10, 2003

MC to Relate R_v^{exp} to R^v and $sin^2\theta_W$

- Parton Distribution Model
 - − Correct for details of PDF model → Used CCFR data for PDF
 - Model cross over from short ν_{μ} CC events

- Neutrino Fluxes
 - $\nu_{\mu} \nu_{e}, \overline{\nu}_{\mu}, \overline{\nu}_{e}$ in the two running modes
 - $-~\nu_{\rm e}\,\text{CC}$ events always look short
- Shower length modeling
 - Correct for short events that look long
- Detector response vs energy, position, and time
 - Continuous testbeam running minimizes systematics

Monday, Feb. 10, 2003

g minimizes systematics PHYS 5326, Spring 2003 Jae Yu

$\sin^2\theta_W$ Fit to R_v^{exp} and R_v^{exp}

- Thanks to the separate beam \rightarrow Measure R^v's separately
- Use MC to simultaneously fit R_n^{exp} and $R_{\overline{n}}^{exp}$ to $\sin^2\theta_w$ and $m_{c'}$ and $\sin^2\theta_w$ and ρ

$$R^{n(\bar{n})} = \frac{S_{NC}^{n(\bar{n})}}{S_{CC}^{n(\bar{n})}} = ?^{2} \left(\frac{1}{2} - \sin^{2}?_{W} + \frac{5}{9} \sin^{4}?_{W} \left(1 + \frac{S_{CC}^{\bar{n}(n)}}{S_{CC}^{n(\bar{n})}} \right) \right)$$

- R^v Sensitive to $sin^2 \theta_W$ while R \overline{v} isn't, so R^v is used to extract $sin^2 \theta_W$ and R \overline{v} to control systematics
- Single parameter fit, using SM values for EW parameters (ρ_0 =1)

NuTeV sin² θ_{W} Uncertainties

Source of Uncertainty	$\mathbf{d} \sin^2 \mathbf{q}_{W}$	Dominant	
Statistical	0.00135	uncertainty	
${oldsymbol v}_e$ flux	0.00039		
Event Length	0.00046		
Energy Measurements	0.00018	1-Loop Electroweak Radiative Corrections based on Bardin, Dokuchaeva JINR-E2-86-2 60 (1986)	
Total Experimental Systematics	0.00063		
CC Charm production, sea quarks	0.00047		
Higher Twist	0.00014		
Non-isoscalar target	0.00005	dsin ² ? ^(On-shell) = -0.00022× $\left(\frac{M_t^2 - (175 \text{GeV})^2}{M_t^2 - (175 \text{GeV})^2}\right)$	
$s^{\overline{n}}/s^{\overline{n}}$	0.00022	$(50 \text{GeV})^2$	
RadiativeCorrection	0.00011	$+0.00032 \times \ln \left(\frac{M_{H}}{10000000000000000000000000000000000$	
RL	0.00032	(150GeV)	
Total Physics Model Systmatics	0.00064		
Total Systematic Uncertainty	0.00162		
D M _w (GeV/c ²)	0.08		
Monday, Feb. 10, 2003	PHYS 5326, Spring Jae Yu	2003 12	

NuTeV vs CCFR Uncertainty Comparisons

Monday, Feb. 10, 2003

13

Homework Assignments

- Process the transferred TMB data files and convert them into TMBtree for root analysis
 - You can work together on this one
 - One person can produce TMBtree for all
 - Due next Monday, Feb. 17
- Produce an electron E_{T} spectrum of the highest
 - $E_{\rm T}$ electrons in your samples
 - Due next Wednesday, Feb. 19

PHYS 5326, Spring 2003 Jae Yu

14