PHYS 5326 – Lecture #9 & 10

Friday, Feb. 21, 2003 Dr. <mark>Jae</mark> Yu

- 1. Interpretation of $Sin^2\theta_W$ results
- 2. The link to Higgs
- 3. Neutrino Oscillation

•Next makeup class is Friday, Mar. 14, 1-2:30pm, rm 200.

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

SM Global Fits with New Results

Summer 2002				
	Measurement	Pull	(O ^{meas} –O ^{fit})/σ ^{meas} -3 -2 -1 0 1 2 3	Without NuTeV
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	-0.24		$\sqrt{2}/dof = 20 5/14 \cdot P = 11.4\%$
m _z [GeV]	91.1875 ± 0.0021	0.00		λ / doi = 20.0/ 11.7 = 77.770
Γ _z [GeV]	2.4952 ± 0.0023	-0.41	-	
σ_{had}^0 [nb]	${\bf 41.540 \pm 0.037}$	1.63		with Nullev
R	20.767 ± 0.025	1.04		$\sqrt{2}/dof = 20.7/15 \cdot D = 1.3\%$
A ^{0,I} fb	0.01714 ± 0.00095	0.68	-	χ /001-27.7713.7 - 7.370
A _I (P _τ)	0.1465 ± 0.0032	-0.55	-	
R _b	0.21644 ± 0.00065	1.01		Confidence level in upper
R _c	0.1718 ± 0.0031	-0.15	•	
A ^{0,b} _{fb}	0.0995 ± 0.0017	-2.62		IVI _{biggs} IIMIT Weakens slightly.
A ^{0,c} _{fb}	0.0713 ± 0.0036	-0.84		
A _b	0.922 ± 0.020	-0.64	-	6
A _c	0.670 ± 0.026	0.06		Contract and the second
A _I (SLD)	0.1513 ± 0.0021	1.46		$\Delta \alpha_{\text{nad}}^{(5)} =$
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.87		-0.02761±0.00036
m _w [GeV]	80.449 ± 0.034	1.62		·····0.02747±0.00012
Γ _w [GeV]	$\textbf{2.136} \pm \textbf{0.069}$	0.62	-	
m _t [GeV]	174.3 ± 5.1	0.00		∾ _]]
sin²θ _w (νN)	0.2277 ± 0.0016	3.00		۲۵
Q _W (Cs)	-72.18 ± 0.46	1.52		
			-3-2-10123	
LEP EWWG: http://www.cern.ch/LEPEWWG				
Friday, Feb. 21, 2003		\bigcirc	PHYS 5326, Spring 2003	m _H [GeV]
		to a	Jae Yu	

- Either sin² $\theta_{W}^{(\text{on-shell})}$ or ρ_{0} could agree with SM but both agreeing simultaneously is unlikely

3

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Model Independent Analysis

• $R^{\nu(\overline{\nu})}$ can be expressed in terms of quark couplings:

$$R^{n(\overline{n})} \equiv \frac{s\binom{(-)}{n} N \to n X}{s\binom{(-)}{n} N \to \ell^{-(+)} X} = g_{L}^{2} + r^{(-1)}g_{R}^{2}$$
Where $r \equiv \frac{s(\overline{?}N \to \ell^{-(+)}X)}{s(?N \to \ell^{-(+)}X)} \approx \frac{1}{2}$

Paschos-Wolfenstein formula can be expressed as

$$R^{-} = \frac{s_{NC}^{?} - s_{NC}^{?}}{s_{CC}^{?} - s_{CC}^{?}} = ?^{2} \left(\frac{1}{2} - \sin^{2}?_{W}\right) = \frac{R^{?} - rR^{?}}{1 - r} = g_{L}^{2} - g_{R}^{2}$$

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Model Independent Analysis

- Performed a fit to quark couplings (and g_L and g_R)
 - For isoscalar target, the νN couplings are

$$g_{L}^{2} = u_{L}^{2} + d_{L}^{2} = ?_{0}^{2} \left(\frac{1}{2} - \sin^{2} ?_{W} + \frac{5}{9} \sin^{4} ?_{W} \right)$$
$$g_{R}^{2} = u_{R}^{2} + d_{R}^{2} = ?_{0}^{2} \frac{5}{9} \sin^{4} ?_{W}$$

– From two parameter fit to \mathbf{R}_{n}^{\exp} and $\mathbf{R}_{\overline{n}}^{\exp}$

 $g_L^2 = 0.3005 \pm 0.0014$ (SM: 0.3042 -2.6 σ deviation)

 $g_R^2 = 0.0310 \pm 0.0011$ (SM: 0.0301 **〈** Agreement)

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Model Independent Analysis

What is the discrepancy due to (Old Physics)?

- R⁻ technique is sensitive to q vs q differences and NLO effect
 - Difference in valence quark and anti-quark momentum fraction
- Isospin symmetry assumption might not be entirely correct
 - Expect violation about 1% → NuTeV reduces this effect by using the ratio of v and v cross sections
 → Reducing dependence by a factor of 3

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

What is the discrepancy due to (Old Physics)?

- s vs s quark asymmetry
 - s and s needs to be the same but the momentum could differ
 - A value of Δs=xs -x s ~+0.002 could shift sin²θ_W by -0.0026, explaining ½ the discrepancy (S. Davison, et. al., hep-ph/0112302)
 - NuTeV di- μ measurement shows that $\Delta s{\sim}{-}0.0027{+}{/}{-}0.0013$

What is the discrepancy due to (Old Physics)?

- NLO and PDF effects
 - PDF, m_c , Higher Twist effect, etc, are small changes
- Heavy vs light target PDF effect (Kovalenko et al., hepph/0207158)
 - Using PDF from light target on Iron target could make up the difference → NuTeV result uses PDF extracted from CCFR (the same target)

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

$\nu_{\rm e} {\rightarrow} \nu_{\rm s}$ Oscillations with Large M_{ν}

- LSND result implicate a large Δm^2 (~10 100eV²) solution for v_e oscillation \Rightarrow MiniBooNe at FNAL is running to put the nail on the coffin
- How would this affect NuTeV $\sin^2 \theta_W$?

$$\sin^{2}?_{W} = \frac{1}{2} - \frac{R^{?} - rR^{?}}{1 - r} \quad \text{and} \quad R^{n} = \frac{N_{\text{Short}}^{n} - N_{n_{e}}^{MC}}{N_{\text{Long}}^{n}}$$

If $v_{e} \rightarrow v_{s}$ with $P_{n_{e} \rightarrow n_{s}}$ then $N_{n_{e}} = N_{n_{e}}^{MC}P_{n_{e} \rightarrow n_{e}} = N_{n_{e}}^{MC}(1 - P_{n_{e} \rightarrow n_{s}})$
Thus, MC will subtract more than it is in nature, causing measured R^v to be smaller and thereby increasing $\sin^{2}\theta_{W}$

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

New Physics: Interactions from Extra U(1) - Z'

- Extra U(1) gauge group giving rise to interactions mediated by heavy Z' boson (M_{Z'}>>M_Z)
- While couplings in these groups are arbitrary, E(6) gauge groups can provide mechanism for extra U(1) interaction via heavy Z'.
- Can give rise to g_R but not g_L which is strongly constrained by precision Z measurement

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

What other explanations (New Physics)?

- Heavy non-SM vector boson exchange: Z', LQ, etc
 - Suppressed Zvv (invisible) coupling
 - LL coupling enhanced than LR needed for NuTeV

What other explanations (New Physics)?

- Propagator and coupling corrections
 - Small compared to the effect
- MSSM : Loop corrections wrong sign and small for the effect
- Many other attempts in progress but so far nothing seems to explain the NuTeV results
 - Lepto-quarks
 - Contact interactions with LL coupling (NuTeV wants m_{z} ~1.2TeV, CDF/DØ: m_{z} >700GeV)
 - Almost sequential Z' with opposite coupling to ν

Langacker *et al*, Rev. Mod. Phys. **64** 87; Cho *et al.*, Nucl. Phys. **B531**, 65; Zppenfeld and Cheung, hep-ph/9810277; Davidson et al., hep-ph/0112302

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Linking $\sin^2\theta_W$ with Higgs through M_{top} vs M_W

Neutrino Oscillation

- First suggestion of neutrino mixing by B. Pontecorvo at the K0, K0-bar mixing in 1957
- Solar neutrino deficit in 1969 by Ray Davis in Homestake Mine in SD. → Called MSW effect
- Caused by the two different eigenstates for mass and weak
- Neutrinos change their flavor as they travel → Neutrino flavor mixing
- Oscillation probability depends on
 - Distance between the source and the observation point
 - Energy of the neutrinos
 - Difference in square of the masses

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Neutrino Oscillation Formalism

• Two neutrino mixing case:

 $\begin{pmatrix} \mathbf{n}_{e} \\ \mathbf{n}_{m} \end{pmatrix} = \begin{pmatrix} \cos \mathbf{q} & \sin \mathbf{q} \\ -\sin \mathbf{q} & \cos \mathbf{q} \end{pmatrix} \begin{pmatrix} \mathbf{n}_{1} \\ \mathbf{n}_{2} \end{pmatrix} \quad \text{OR} \quad \frac{|\mathbf{n}_{e}\rangle = \cos \mathbf{q} |\mathbf{n}_{1}\rangle + \sin \mathbf{q} |\mathbf{n}_{2}\rangle}{|\mathbf{n}_{m}\rangle = -\sin \mathbf{q} |\mathbf{n}_{1}\rangle + \cos \mathbf{q} |\mathbf{n}_{2}\rangle}$

where $|n_e\rangle$ and $|n_m\rangle$ are weak eigenstates, while $|n_1\rangle$ and $|n_2\rangle$ are mass eigenstates, and θ is the mixing angle that give the extent of mass eigenstate mixture, analogous to Cabbio angle

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Oscillation Probability

• Let v_{μ} at time t=0 be the linear combination of v_1 and v_2 with masses m_1 and m_1 , the wave function becomes:

$$|\boldsymbol{n}_{\boldsymbol{m}}(t=0)\rangle = -\sin \boldsymbol{q}|\boldsymbol{n}_{1}\rangle + \cos \boldsymbol{q}|\boldsymbol{n}_{2}\rangle$$

• Then later time t the v_{μ} wave function becomes:

$$|\boldsymbol{n}_{m}(t)\rangle = -\sin \boldsymbol{q} \exp\left[-i\left(\frac{E_{1}}{\hbar}\right)^{2}\right]|\boldsymbol{n}_{1}\rangle + \cos \boldsymbol{q} \exp\left[-i\left(\frac{E_{2}}{\hbar}\right)^{2}\right]|\boldsymbol{n}_{2}\rangle$$

For relativistic neutrinos (E_v>>m_i), the energies of the mass eigenstates are:

$$E_k = \sqrt{p^2 + m_k^2} \cong p + \frac{m_k^2}{2p}$$

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Oscillation Probability

• Substituting the energies into the wave function:

$$|\boldsymbol{n}_{m}(t)\rangle = \exp\left[-it\left(p + \frac{m_{1}^{2}}{2E_{n}}\right)\right]\left[-\sin\boldsymbol{q}|\boldsymbol{n}_{1}\rangle + \cos\boldsymbol{q}|\boldsymbol{n}_{2}\rangle\exp\left[\frac{i\Delta m^{2}t}{2E_{n}}\right]\right]$$

where $\Delta m^2 \equiv m_1^2 - m_2^2$ and $E_n \cong p$.

- Since the v's move at the speed of light, t=x/c, where x
- is the distance to the source of ν_μ.
 The probability for ν_μ with energy E_ν oscillates to ν_e at the distance *L* from the source becomes

$$P(\boldsymbol{n}_{m} \rightarrow \boldsymbol{n}_{e}) = \sin^{2} 2\boldsymbol{q} \sin^{2} \left(\frac{1.27\Delta m^{2}L}{E_{n}}\right)$$

Friday, Feb. 21, 2003
Friday, Feb. 21, 2003

Homework Assignments

- Produce an electron E_T spectrum of the highest E_T electrons in your samples
 - Due Wednesday, Feb. 26
- Complete the derivation of the probability for nm of energy E_{ν} to oscillate to ν_e at the distance L away from the source of $\nu_{\mu}.$
- Draw the oscillation probability distributions as a function of
 - Distance L for a fixed neutrino beam energy E_v (=5, 50, 150 GeV)
 - E_v for a detector at a distance L (=1.5, 735, 2200km) away from the source
- Due Wednesday, Mar. 5

Friday, Feb. 21, 2003

PHYS 5326, Spring 2003 Jae Yu