PHYS 5326 – Lecture #11

Monday, Feb. 24, 2003 Dr. <mark>Jae</mark> Yu

- 1. Brief Review of $\sin^2 \theta_W$ measurement
- 2. Neutrino Oscillation Measurements
 - 1. Solar neutrinos
 - 2. Atmospheric neutrinos
- 3. A lecture on neutrino mass (Dr. Sydney Meshkov from CalTech)

•Next makeup class is Friday, Mar. 14, 1-2:30pm, rm 200.

Monday, Feb. 24, 2003

PHYS 5326, Spring 2003 Jae Yu

٠

•

SM Global Fits with New Results

Summer 2002						
	Measurement	Pull	(O ^{meas} –O ^{fit})/σ ^{meas} -3 -2 -1 0 1 2 3	Without NuTeV		
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02761 ± 0.00036	-0.24		$\sqrt{2}/dof = 20 5/14 \cdot P = 11.4\%$		
m _z [GeV]	91.1875 ± 0.0021	0.00		λ / doi = 20.0/ 11. 1 = 11.170		
Γ _z [GeV]	2.4952 ± 0.0023	-0.41	-	$\Lambda/1+b$ $\Lambda/1+T_{0}/1$		
σ_{had}^0 [nb]	${\bf 41.540 \pm 0.037}$	1.63		with Nullev		
R	20.767 ± 0.025	1.04		$\sqrt{2}/dof = 20.7/15 \cdot D = 1.3\%$		
A ^{0,I} fb	0.01714 ± 0.00095	0.68	-	χ /001-27.7713.7 - 7.370		
$A_{I}(P_{\tau})$	0.1465 ± 0.0032	-0.55	-			
R _b	0.21644 ± 0.00065	1.01		Confidence level in upper		
R _c	0.1718 ± 0.0031	-0.15	•			
A ^{0,b} _{fb}	0.0995 ± 0.0017	-2.62		IVI _{biggs} IIMIT Weakens slightly.		
A ^{0,c} _{fb}	0.0713 ± 0.0036	-0.84		111995		
A _b	0.922 ± 0.020	-0.64	-	6		
A _c	0.670 ± 0.026	0.06		theory uncertainty		
A _I (SLD)	0.1513 ± 0.0021	1.46		$\Delta \alpha_{\text{nad}}^{(5)} =$		
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.87		-0.02761±0.00036		
m _w [GeV]	80.449 ± 0.034	1.62		0.02747±0.00012		
Γ _w [GeV]	$\textbf{2.136} \pm \textbf{0.069}$	0.62	-			
m _t [GeV]	174.3 ± 5.1	0.00		NG 1		
sin²θ _w (νN)	0.2277 ± 0.0016	3.00		A 1		
Q _W (Cs)	$\textbf{-72.18} \pm \textbf{0.46}$	1.52				
			-3-2-10123			
LEP EWWG: http://www.cern.ch/LEPEWWG						
Monday, Fe	b. 24, 2003	0	PHYS 5326, Spring 2003 Jae Yu	m _H [GeV]		

- Either sin² $\theta_{W}^{(on-shell)}$ or ρ_{0} could agree with SM but both agreeing simultaneously is unlikely

4

Monday, Feb. 24, 2003

PHYS 5326, Spring 2003 Jae Yu

Model Independent Analysis

• $R^{\nu(\overline{\nu})}$ can be expressed in terms of quark couplings:

$$R^{n(\overline{n})} \equiv \frac{s\binom{(-)}{n} N \to n X}{s\binom{(-)}{n} N \to \ell^{-(+)} X} = g_{L}^{2} + r^{(-1)}g_{R}^{2}$$
Where $r \equiv \frac{s(\overline{?}N \to \ell^{-(+)}X)}{s(?N \to \ell^{-(+)}X)} \approx \frac{1}{2}$

Paschos-Wolfenstein formula can be expressed as

$$R^{-} = \frac{s_{NC}^{?} - s_{NC}^{?}}{s_{CC}^{?} - s_{CC}^{?}} = ?^{2} \left(\frac{1}{2} - \sin^{2}?_{W}\right) = \frac{R^{?} - rR^{?}}{1 - r} = g_{L}^{2} - g_{R}^{2}$$

Monday, Feb. 24, 2003

PHYS 5326, Spring 2003 Jae Yu

Model Independent Analysis

Linking $sin^2 \Theta_W$ with Higgs through M_{top} vs M_W

Oscillation Probability

• Substituting the energies into the wave function:

$$|\boldsymbol{n}_{\boldsymbol{m}}(t)\rangle = \exp\left[-it\left(p + \frac{m_{1}^{2}}{2E_{\boldsymbol{n}}}\right)\right]\left[-\sin\boldsymbol{q}|\boldsymbol{n}_{1}\rangle + \cos\boldsymbol{q}|\boldsymbol{n}_{2}\rangle\exp\left[\frac{i\Delta m^{2}t}{2E_{\boldsymbol{n}}}\right]\right]$$

where $\Delta m^2 \equiv m_1^2 - m_2^2$ and $E_n \cong p$.

- Since the v's move at the speed of light, t=x/c, where x
- is the distance to the source of ν_μ.
 The probability for ν_μ with energy E_ν oscillates to ν_e at the distance *L* from the source becomes

$$P(\boldsymbol{n}_{m} \rightarrow \boldsymbol{n}_{e}) = \sin^{2} 2\boldsymbol{q} \sin^{2} \left(\frac{1.27 \Delta m^{2} L}{E_{n}}\right)$$

Monday, Feb. 24, 2003
PHYS 5326, Spring 2003
Jae Yu

Why is Neutrino Oscillation Important?

- Neutrinos are one of the fundamental constituents in nature
 - Three weak eigenstates based on SM
- Left handed particles and right handed anti-particles only
 - Violates parity \rightarrow Why only neutrinos?
 - Is it because of its masslessness?
- SM based on massless neutrinos
- Mass eigenstates of neutrinos makes flavors to mix
- SM in trouble...
- Many experimental results showing definitive evidences of neutrino oscillation
 - SNO giving 5 sigma results

Monday, Feb. 24, 2003

PHYS 5326, Spring 2003 Jae Yu

ν Sources for Oscillation Experiments

- Must have some way of knowing the flux - Why?
- Natural Sources
 - Solar neutrinos
 - Atmospheric neutrinos
- Manmade Sources
 - Nuclear Reactor
 - Accelerator

PHYS 5326, Spring 2003 Jae Yu

Oscillation Detectors

- The most important factor is the energy of neutrinos and its products from interactions
- Good particle ID is crucial
- Detectors using natural sources
 - Deep under ground to minimize cosmic ray background
 - Use Cerenkov light from secondary interactions of neutrinos
 - v_{e} + e \rightarrow e+X: electron gives out Cerenkov light
 - $\nu_{\mu}\,\text{CC}$ interactions, resulting in muons with Cerenkov light
- Detectors using accelerator made neutrinos
 - Look very much like normal neutrino detectors
 - Need to increase statistics

Monday, Feb. 24, 2003

PHYS 5326, Spring 2003 Jae Yu

Solar Neutrinos

- Result from nuclear fusion process in the Sun
- Primary reactions and the neutrino energy from them are:

Name	Reaction	${\sf E}_{\sf v}$ End point (MeV)
рр	$p+p \rightarrow D+e^++n_e$	0.42
рер	$p+e^-+p \rightarrow D+n_e$	1.44
⁷ Be	$^{7}Be+e^{-}\rightarrow^{7}Li+\mathbf{n}_{e}$	0.86
⁸ B	$^{8}B \rightarrow 2 (^{4}He) + e^{+} + \mathbf{n}_{e}$	15

Monday, Feb. 24, 2003

PHYS 5326, Spring 2003 Jae Yu

Solar Neutrino Energy Spectrum

Comparison of Theory and Experiments

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Sudbery Neutrino Observatory (SNO)

SNO v_e Event Display

Solar Neutrino Flux

Atmospheric Neutrinos

- Neutrinos resulting from the atmospheric interactions of cosmic ray particles
 - ν_{μ} to $\nu_{\rm e}$ is about 2 to 1
 - He, p, etc + N $\rightarrow \pi$,K, etc
 - $\pi \not \rightarrow \mu {+} \nu_{\mu}$
 - $\mu \rightarrow e + \nu_e + \nu_\mu$
 - This reaction gives 2 ν_{μ} and 1 ν_{e}
- Expected flux ratio between ν_{μ} and ν_{e} is 2 to 1
- Form a double ratio for the measurement

$$R \equiv \frac{\begin{pmatrix} N_{n_e} \\ N_{n_m} \end{pmatrix}^{Exp}}{\begin{pmatrix} N_{n_e} \\ N_{n_m} \end{pmatrix}^{The}}$$

19

Monday, Feb. 24, 2003

Super Kamiokande

- •Kamioka zinc mine, Japan
- 1000m underground
- •40 m (d) x 40m(h) SS
- •50,000 tons of ultra pure H_2O
- •11200(inner)+1800(outer) 50cm PMT's
- •Originally for proton decay experiment
- •Accident in Nov. 2001, destroyed 7000 PMT's
- •Dec. 2002 resume data taking

Monday, Feb. 24, 2003

PHYS 5326, Spring 2003 Jae Yu

Super-K Event Displays

Monday, Feb. 24, 2003

PHYS 5326, Spring 2003 Jae Yu

Accelerator Based Experiments

- Mostly v_{μ} from accelerators
- Long and Short baseline experiments
 - Long baseline: Detectors located far away from the source, assisted by a similar detector at a very short distance (eg. MINOS: 370km, K2K: 250km, etc)
 - Compare the near detector with the far detector, taking into account angular dispersion
 - Short baseline: Detectors located at a close distance to the source
 - Need to know flux well

Monday, Feb. 24, 2003

PHYS 5326, Spring 2003 Jae Yu

