PHYS 5326 – Lecture #12

Monday, Mar. 3, 2003 Dr. **Jae** Yu

1. Neutrino Oscillation Measurements

- 1. Atmospheric neutrinos
- 2. Accelerator Based Oscillation Experiments

Next makeup class is Friday, Mar. 14, 1-2:30pm, rm 200.
We will have an in-class, 2 hour, mid-term exam on that day.

Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu

Oscillation Probability

• Substituting the energies into the wave function:

$$|\boldsymbol{n}_{m}(t)\rangle = \exp\left[-it\left(p + \frac{m_{1}^{2}}{2E_{n}}\right)\right]\left[-\sin\boldsymbol{q}|\boldsymbol{n}_{1}\rangle + \cos\boldsymbol{q}|\boldsymbol{n}_{2}\rangle\exp\left[\frac{i\Delta m^{2}t}{2E_{n}}\right]\right]$$

where $\Delta m^2 \equiv m_1^2 - m_2^2$ and $E_n \cong p$.

- Since the v's move at the speed of light, t=x/c, where x
- is the distance to the source of ν_μ.
 The probability for ν_μ with energy E_ν oscillates to ν_e at the distance *L* from the source becomes

$$P(\boldsymbol{n}_{m} \rightarrow \boldsymbol{n}_{e}) = \sin^{2} 2\boldsymbol{q} \sin^{2} \left(\frac{1.27\Delta m^{2}L}{E_{n}}\right)$$

Mar. 3, 2003 PHYS 5326, Spring 2003
Jae Yu

Monday,

Oscillation Detectors

- The most important factor is the energy of neutrinos and its products from interactions
- Good particle ID is crucial
- Detectors using natural sources
 - Deep under ground to minimize cosmic ray background
 - Use Cerenkov light from secondary interactions of neutrinos
 - v_{e} + e \rightarrow e+X: electron gives out Cerenkov light
 - $\nu_{\mu}\,\text{CC}$ interactions, resulting in muons with Cerenkov light
- Detectors using accelerator made neutrinos
 - Look very much like normal neutrino detectors
 - Need to increase statistics

Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu

Atmospheric Neutrinos

- Neutrinos resulting from the atmospheric interactions of cosmic ray particles
 - ν_{μ} to $\nu_{\rm e}$ is about 2 to 1
 - He, p, etc + N $\rightarrow \pi$,K, etc
 - $\pi \not \rightarrow \mu {+} \nu_{\mu}$
 - $\mu \rightarrow e + \nu_e + \nu_\mu$
 - This reaction gives 2 ν_{μ} and 1 ν_{e}
- Expected flux ratio between ν_{μ} and ν_{e} is 2 to 1
- Form a double ratio for the measurement

$$R \equiv \frac{\begin{pmatrix} N_{n_e} \\ N_{n_m} \end{pmatrix}^{Exp}}{\begin{pmatrix} N_{n_e} \\ N_{n_m} \end{pmatrix}^{The}}$$

4

Monday, Mar. 3, 2003

Super Kamiokande

- •Kamioka zinc mine, Japan
- 1000m underground
- •40 m (d) x 40m(h) SS
- \cdot 50,000 tons of ultra pure H₂O
- •11200(inner)+1800(outer) 50cm PMT's
- •Originally for proton decay experiment
- •Accident in Nov. 2001, destroyed 7000 PMT's
- •Dec. 2002 resume data taking

Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu

Super-K Event Displays

Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu

Accelerator Based Experiments

- Mostly v_{μ} from accelerators
- Long and Short baseline experiments
 - Long baseline: Detectors located far away from the source, assisted by a similar detector at a very short distance (eg. MINOS: 370km, K2K: 250km, etc)
 - Compare kinematic quantities measured at the near detector with the far detector, taking into account angular dispersion
 - Short baseline: Detectors located at a close distance to the source
 - Need to know flux well

Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu

Long Baseline Experiment Concept (K2K)

Different Neutrino Oscillation Strategies

Exclusion Plots

MINOS (Main Injector Neutrino Oscillation Search)

- Located in the Soudan mine in Minnesota, 800m underground
- Detector consists of iron and scintillation counters, weighing a total of 5400 tons
- 9000 neutrino events/year expected

Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu

Long Baseline Experiments

- Baseline length over a few hundred km
- Neutrino energies can be high
- Experiments and Facilities

$$P(\boldsymbol{n}_{m} \rightarrow \boldsymbol{n}_{e}) = \sin^{2} 2\boldsymbol{q} \sin^{2} \left(\frac{1.27 \Delta m^{2} L}{E_{n}} \right)$$

- Fermilab (to Soudan Underground Facility):
 - MINOS: Main Injector Neutrino Oscillation Search (L=730km)
 - Off Axis Neutrino Appearance Experiment (Near Soudan mine)
 - New Neutrino Oscillation Experiment at Soudan (Emulsion+iron) → Tau appearance
- BNL: A proposal to shoot neutrinos to Window Homestake

Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu

Long Baseline Experiment Cont'd

- CERN (CNGS, CERN Neutrinos to Grand Sasso):
 - Baseline length, L=730km
 - ICANOE (Ring Imaging Cerenkov Detector)
 - ICARUS (LAr Cerenkov detector)
 - OPERA ($\nu_{\mu} \rightarrow \nu_{\tau}$): Lead+Emulsion
 - NOE (Neutrino Oscillation Experiment)
- KEK, Japan:
 - K2K: KEK to Kamioka Mine (L=250km)

Monday, Mar. 3, 2003

PHYS 5326, Spring 2005 Jae Yu

Short Baseline Experiments

- Baseline less than a few km
- Neutrino energies need to be low

$$P(\boldsymbol{n}_{m} \rightarrow \boldsymbol{n}_{e}) = \sin^{2} 2\boldsymbol{q} \sin^{2} \left(\frac{1.27 \Delta m^{2} L}{E_{n}} \right)$$

- Experiments and laboratories
 - CERN, Geneva: NOMAD, CHORUS,
 - Fermilab: BooNE, COSMOS (rejected)
 - Los Alamos: LSND (Completed)
 - Rutherford, UK: KARMEN
 - Oak Ridge: ORLanD (Using spallation neutrino

SOUICCE) Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu

MiniBooNE (**Boo**ster **N**eutrino **E**xperiment)

- Goal: To investigate the signal from LSND on $\overline{\nu_{\mu}}$ $\rightarrow \nu_{e}$ oscillation at $\Delta m^{2} \sim 1eV^{2}$

 - A bit contradictory to Super-K results
 - Measure oscillation properties
- Uses 8GeV protons from Fermilab's Booster on a target embedded in a Horn magnet
- Use Cerenkov light in a liquid scintillator detector
 - 40ft sphere with 800 tons of mineral oil and 1520 PMT's
 - Observe 1 neutrino event/20 sec → 1M/year

Future: Neutrino Factory

- Spin-off of a muon collider research
 - One a hot, summer day at BNL, the idea of neutrino storage ring popped up
- Future facility using muon storage ring, providing well understood neutrino beam (ν_{μ} and ν_{e}) at about 10⁶ times higher intensity

Summary of ν_τ Appearance Experiments

Ø	Neutrino oscillatior	n data page - Micro	osoft Internet Exp	lorer provided l	oy America Online - [\	Working Offline]		JX
Eil	e <u>E</u> dit <u>V</u> iew F <u>a</u>	vorites <u>T</u> ools <u>H</u> e	elp					A
Ado	dress 🙋 D:\UTA\Cla	sses\5326-spring03\	Lectures\Wee of Mar.	3\Neutrino oscilla	ition data page.htm		▼ 🖓 Go Lin	nks »
	Experiment	Location	Source	Baseline	Observation	Status	Years	
	E531	<u>Fermilab</u>	accelerator	949 m	<u>no osc</u>	finished	86	
	<u>CHORUS</u>	<u>Cern</u>	SPS	820 m	<u>no osc</u>	scanning and analyzing data	1994- 1997-	
	Nomad	<u>Cern</u>	SPS	820 m	no osc	analyzing data	1995-1998	
	<u>OPERA</u>	<u>Gran</u> Sasso	<u>Cern</u>	740 km		proposed	2005-	
	TOSCA	<u>Cern</u>	SPS			rejected	-	
e) Internet	

Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu

Summary of ν_e Appearance Experiments

Neutrino oscillation	n data page - Microsof	t Internet Explorer provid	led by America Unline	e - [Working Uffline]		الح	니즈
<u>File E</u> dit <u>V</u> iew Fa	avorites <u>T</u> ools <u>H</u> elp						A
Address 🛃 D:\UTA\Cla	asses\5326-spring03\Lectu	ires\Wee of Mar. 3\Neutrino c	oscillation data page.htm			🔹 🤗 Go 🛛 Lii	nks »
Experiment	Location	Source	Baseline	Observation	Status	Years	
BEBC	<u>Cern</u>	SPS		<u>no osc</u>	finished	- 1986?	
CCFR	<u>Fermilab</u>	Tevatron	0.9 km to 1.4 km	<u>no osc</u>	taking data (?)	1990? -	
E776	BNL	AGS	1 km	<u>no osc</u>	finished	85-86	
LSND	Los Alamos	LAMPF proton beam	30 m	excess of $\overline{\nu}_e$: $\underline{40 \pm 9}$ ν_e : $\underline{18 \pm 7}$	completed	1994- 1998	
<u>Karmen</u>	Rutherford	ISIS proton beam	18 m	<u>no osc</u>	taking data	1994- 2001	
Nomad	<u>Cern</u>	SPS	820 m	<u>no osc</u>	analyzing data	1995- 1998	
<u>K2K</u>	Kamioka	KEK beam	250 km		taking data	1999-	
Minos	<u>Soudan</u> mine, MS	Main Injector at <u>Fermilab</u>	730 km		under construction	2004-	
miniBooNE	<u>Fermilab</u>	Fermilab Booster	0.5 km/ 1 km		Taking Data	2003-	
NOE	Gran Sasso	Cern	732 km		merged to Icanoe		
<u>Icanoe</u>	Gran Sasso	Cern	732 km		proposed	about 2005	
Cosmos	<u>Fermilab</u>	Main Injector	1 km		rejected		-

v_e Disappearance Experiments

Idress 📳 D:\UTA\Clas	sses\5326-spring03\Lectur	es\Wee of Mar. 3\Neutrino oscillat	ion data page.htm		🗾 🤗 Go Lin
Experiment	Location	Baseline	Observation	Status	Years
Gösgen	Switzerland	37.9 m, 45.9 m, 64.7 m	<u>no osc</u>	finished	81-85
Bugey	France	15 m, 40 m, 95 m	<u>no osc</u>	finished	1981-1994
Krasnoyarsk	Russia	57 m, 57.6 m, 231.4 m	<u>no osc</u>		19??
<u>Chooz</u>	Ardennes, France	1 km	O/E=0.98 ± 0.4 ± 0.4	analyzing data	1997-1998
<u>Palo Verde</u>	Arizona, U.S.A.	750 m	$\frac{O/E=1.04\pm0.03}{\pm0.08}$	taking data	1998-2000 (July)
KamLAND	Japan	100 km		Taking Data	2001-
San Onofre	U.S.A.	about km		rejected	

Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu

What do we know now?

- We clearly know neutrinos oscillate → Neutrinos have masses
- It seems that there are three allowed regions of parameters (sin²2 θ and Δ m²) that the current data seem to point
 - LSND ~1eV²; Super-K ~ 10⁻³ eV², Solar (LMA) ~ 10⁻⁵ eV²
 - There are at least three flavors participating in oscillation
 - Sin²2 θ_{23} ~ 1 at 90% confidence level
 - $\ |\Delta m_{32}{}^2| \sim 2 x 10^{\text{-3}} \, eV^2$
 - $\Delta m_{21}^2 \sim 2x10-3 \text{ eV2}$ (If LMA confirmed)
 - Sin²2 θ_{12} ~ 0.87 at 90% confidence level (if LMA confirmed)
 - Sin²2 θ_{13} < O(0.1)

Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu

What do we not know?

- Does 3-flavor mixing provide right framework?
 - For CP-violating oscillation, additional neutrino flavors, neutrino decay, etc?
- How many flavors of neutrinos do we have?
- Is $\sin^2 2\theta_{13}$ 0 or small?
- What is the sign of Δm_{32} ?
 - What are the configuration of neutrino masses?
 - What are the actual masses of neutrinos mass eigenstates?
- What are the matter effects?
- Is $\sin^2 2\theta_{23} = 1$?
- While there are a lot of questions and measurements need to be performed, neutrino oscillation provides an exciting new area in HEP.

Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu

Useful Links for Neutrinos Oscillations

- <u>http://www.hep.anl.gov/ndk/hypertext/nuindustry.</u> <u>html</u>
- <u>http://www.ps.uci.edu/~superk/oscillation.html</u>
- <u>http://wwwlapp.in2p3.fr/neutrinos/ankes.html</u>

Monday, Mar. 3, 2003

PHYS 5326, Spring 2003 Jae Yu