PHYS 5326 – Lecture #23

Monday, Apr. 21, 2003 Dr. Jae Yu

Backgrounds to Higgs Searches
Requirement on Experiments for Higgs Searches

Monday, Apr. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Announcement

- Semester project presentation
 - 1:00 4:00pm, Wednesday, May 7 in room 200
 - 30 minutes each + 10 minute questions
 - Send me slides by noon, Wednesday, May 7
 - The slides will be made as UTA-HEP notes, thus we need to make the presentations electronic
 - Order of presentation: SH, VK, BS, FJ
- Project reports due at the presentation
 - Must be electronic as well so that they can be made UTA-HEP notes

Monday, Apr. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Summary of Final States of Interest

- W decay:
 - $W \rightarrow qq$ channel very hard
 - depends on dijet mass resolution
 - $\ W \to e \nu \, , \, \mu \nu \, , \, \tau \nu$
 - Isolated lepton plus missing E_T
- Z decay
 - $Z \rightarrow qq$ same as W difficult
 - $~Z \rightarrow ee$, $\mu\mu$ (probably not $\tau\tau)$
 - Isolated lepton plus mass resolution
- Higgs decay:
 - Look for b \overline{b} pairs
 - Impact parameter resolution
 - Silicon vertexing
 - Di-jet mass resolution

Monday, Apr. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

b-tagging is a MUST

Higgs Backgrounds To WH

- WH \rightarrow Iv b backgrounds
 - $-Wb \overline{b}$
 - Where the W decays leptonically
 - Cross section is 2.3nb* $\alpha_s^{2*}m_b$ -threshold factor for each lepton
 - WZ:
 - W decays leptonically while Z decays to b \overline{b}
 - Cross section is 2.3nb* α_{EW2} *b final state branching ratio

Monday, Apr. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Higgs Backgrounds To WH

- t t: Each t decays to W and b pairs. How would this become a background?
- single t: How?
- WH \rightarrow qq b \overline{b} overwhelmed by QCD background since it has four jets in the final state

Monday, Apr. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Higgs Backgrounds to ZH

- $ZH \rightarrow IIb \overline{b}$ final state for signature
 - Zb b
 - Z decays to two leptons
 - Cross section is 0.2nb* $\alpha_s^{2*}m_b$ -threshold factor for each lepton
 - ZZ
 - One Z decays to two leptons while the other decays to b \overline{b}
 - Cross section is 2*0.2nb* α_{EW} *b branching ratio
 - t t:How does this channel become background to ZH?

Monday, Apr. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Higgs Backgrounds to ZH

- $ZH \rightarrow \nu\nu b \overline{b}$
 - QCD:How would this become background to this process?
 - Zb \overline{b} : Z decays to neutrinos
 - ZZ: One Z decays to neutrinos while the other decays to b b
 - t $\overline{t:}$ How would this process become background?

Monday, Apr. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Higgs Backgrounds to gg \rightarrow H \rightarrow WW*

- WW final state is a generic, inherent and irreducible background
- 2/+MET final state
 - ZZ: One Z decays to two leptons while the other to two neutrinos
 - Drell-Yan (qq $\rightarrow \gamma^* \rightarrow II$)
 - -t t: How this could be the background to this process?
 - WZ: Z decays to two leptons, while W decays to /+ ν where / is lost
 - $\tau\tau$: Both τ 's decay leptonically

Monday, Apr. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Higgs Backgrounds to gg \rightarrow H \rightarrow WW*

- 1/+MET+2jets final state
 - WZ: W decays to /+ ν and Z decays to two jets
 - ZZ: One Z decays to two leptons (of which one is lost) while the other to two jets
 - -t t : How is this become a background to this process?
 - tW:How could this become a background to this process?

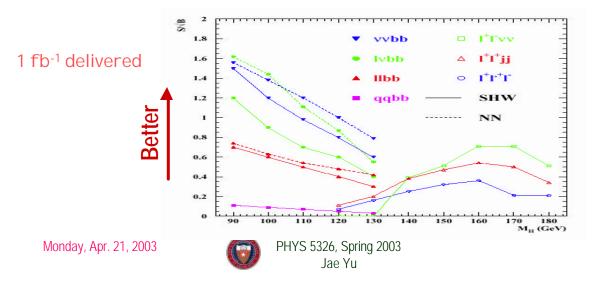
Monday, Apr. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Summary of Higgs Physics Backgrounds

- The best discovery channel is with HW and HZ
- The background for $m_H < 130 \text{ GeV}$ are
 - WH \rightarrow Iv b b backgrounds Wb b, WZ, t t, single t
 - WH \rightarrow qq b \overline{b} overwhelmed by QCD background since it has four jets in the final state
 - $ZH \rightarrow IIb \overline{b}$ backgrounds Zb \overline{b} , ZZ, t \overline{t}
 - $ZH \rightarrow vv b \overline{b}$ backgrounds QCD, Zb \overline{b} , ZZ, t \overline{t}
- The background for $m_H > 130 \text{ GeV}$ are $- gg \rightarrow H \rightarrow WW^*$ backgrounds Drell-Yan, WW, WZ, ZZ, tt, tW, $\tau\tau$

Monday, Apr. 21, 2003


PHYS 5326, Spring 2003 Jae Yu

Tevatron Higgs Production σ

TeVatron Run II Higgs S/N

- $H \rightarrow b \overline{b}$
 - S/N drops as M_H increases
 - Run out of events....
 - Ultimately limits the experimental reach
- $H \rightarrow WW/ZZ$ (virtual)
 - Depends on di-jet mass resolution

What do we need to do all this?

- Smaller x-sec → Need higher rate
- Increase CMS energy of the accelerator
 - Increased x-sec
 - Increased kinematic reach for higher $\rm M_{\rm H}$
- Increased instantaneous Luminosity
 - Increased Number of protons and anti-protons, especially anti-protons
 - Increased duty factor/efficiency
 - Shorter fill time of anti-protons

Monday, Apr. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Run II TeVatron Benchmarks

Parameters	Run I	Runlla/b
L _{inst} (cm ⁻² sec ⁻¹)	~10 ³¹	2x10 ³² ~10 ³³
Bunch Spacing	3.5 µsec	396 / 132 nsec
E _{CMS} (TeV)	1.8	1.98
L _{int}	~110pb ⁻¹	2fb ⁻¹ / >6fb ⁻¹

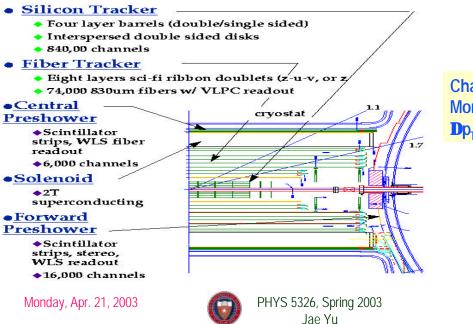
- $\sigma(tt) \sim 40\%$ higher at 2 TeV
- $\delta M_H \sim 40\%$ per experiment
- Increase in rates
- Decrease in bunch spacing

Monday, Apr. 21, 2003

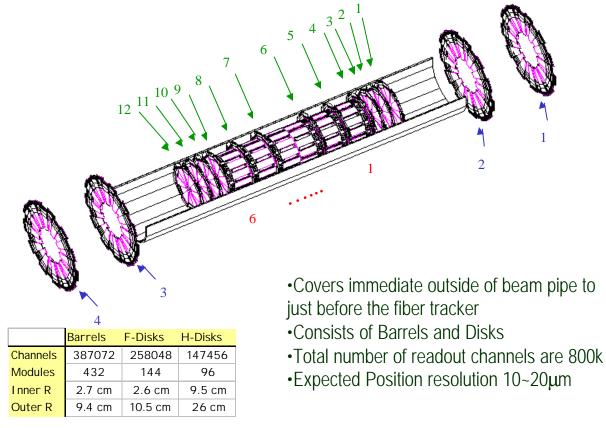
PHYS 5326, Spring 2003 Jae Yu

- Detectors need to be able to:
 - Tag the b-quark jets
 - Capable of measuring vertex that are ~100µm away from the primary vertex → Precision vertex detector
 - Tag and associate leptons with a jet
 - Good Track momentum measurement, charge, and P-ID
 - Good jet mass resolution
 - Faster and more efficient and targeted trigger
 - Track trigger
 - Higher data recording bandwidth

Monday, Apr. 21, 2003



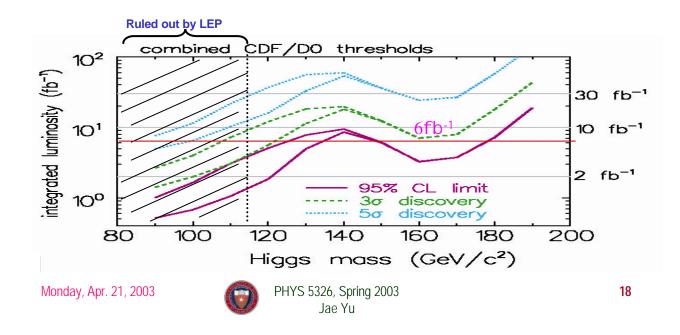
PHYS 5326, Spring 2003 Jae Yu


Upgraded DØ Tracking System

- Ability to trigger on tracks for quick dicision
- Measure momentum and identify charge
- Upgrade tracking & Trigger systems

Charged Particle Momentum Resolution **D**p_T/p_T ~ 5% @ p_T = 10 GeV/c

DØ Silicon Microstrip Detector


Monday, Apr. 21, 2003

PHYS 5326, Spring 2003 Jae Yu

Tevatron Run II Expectation

- LEP limit M_H>115 GeV
- Can have up to 6 fb⁻¹/exp by 2010→ Good to reach 95% CL limit up to M_H ~ 180GeV

Homework Assignment

- Compute the following quantities for WH and ZH final states with leptons for $M_{\rm H}$ =115 GeV and L=15fb⁻¹.
 - Expected percentage of various final states
 - Number of signal events for the final states
- Due: Wednesday, Apr. 23
- Suggestion: Make a table of the above quantities

PHYS 5326, Spring 2003 Jae Yu