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PHYS 1441 – Section 004
Lecture #25

Wednesday, May 5, 2004
Dr. Jaehoon Yu

Final Exam at 11am – 12:30pm, Next Monday, May. 10 in SH101!

Review of Chapters 8 - 11
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Fundamentals on Rotation
Linear motions can be described as the motion of the center of 
mass with all the mass of the object concentrated on it.   

Is this still true for 
rotational motions?

No, because different parts of the object have 
different linear velocities and accelerations.

Consider a motion of a rigid body – an object that 
does not change its shape – rotating about the axis 
protruding out of the slide. 

One radian is the angle swept by an arc length equal to the radius of the arc.
ο360Since the circumference of a circle is 2πr,

The relationship between radian and degrees is

l Rθ=The arc length, or sergita, is
l
R

θ =Therefore the angle, θ, is            . And the unit of 
the angle is in radian.

rad 1

rr /2π= π2=

π2/360ο= π/180ο=
57.3≅180 3.14≅
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Example 8-1
A particular bird’s eyes can just distinguish objects that subtend an angle no 
smaller than about 3x10-4 rad.  (a) How many degrees is this?  (b) How small 
an object can the bird just distinguish when flying at a height of 100m? 

(a) One radian is 360o/2π. Thus
43 10 rad−×

l =

( )43 10 rad−= × ×

( )360 2 radπ 0.017=
(b) Since l=rθ and for small angle 
arc length is approximately the 
same as the chord length.

rθ =
4100 3 10m rad−× × =

23 10 3m cm−× =
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Using what we have learned in the previous slide, how 
would you define the angular displacement? =∆θ
Angular Displacement, Velocity, and Acceleration

How about the average angular speed? ≡ω

And the instantaneous angular speed? ≡ω

By the same token, the average angular 
acceleration

≡α

And the instantaneous angular 
acceleration? ≡α

When rotating about a fixed axis, every particle on a rigid object rotates through  
the same angle and has the same angular speed and angular acceleration.

θi

θf

if θθ −

=
−

−

if

if

tt
θθ

t∆
∆θ

=
∆
∆

→∆ tt

θlim
0 dt

dθ

=
−

−

if

if

tt
ωω

t∆
∆ω

=
∆
∆

→∆ tt

ωlim
0 dt
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Unit? rad/s2

Unit? rad/s2
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Rotational Kinematics
The first type of motion we have learned in linear kinematics was 
under a constant acceleration.  We will learn about the rotational 
motion under constant angular acceleration about a fixed rotational 
axis, because these are the simplest motions in both cases.

=fω

Just like the case in linear motion, one can obtain

Angular Speed under constant 
angular acceleration:

Angular displacement under 
constant angular acceleration:

=fθ

One can also obtain =2
fω

ti αω +

2

2
1 ttii αωθ ++

( )ifi θθαω −+ 22
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Example for Rotational Kinematics
A wheel rotates with a constant angular acceleration of 3.50 rad/s2.  If 
the angular speed of the wheel is 2.00 rad/s at ti=0, a) through what 
angle does the wheel rotate in 2.00s?

if θθ −

Using the angular displacement formula in the previous slide, one gets

tω=

( )200.250.3
2
100.200.2 ×+×= rad0.11=

.75.1.
2

0.11 revrev ==
π

21
2

tα+
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Example for Rotational Kinematics cnt’d
What is the angular speed at t=2.00s?

tif αωω +=
Using the angular speed and acceleration relationship

Find the angle through which the wheel rotates between t=2.00 
s and t=3.00 s.

2tθ = =

srad/00.900.250.300.2 =×+=

3tθ = =

θ∆ 2θθ −= 3 rad8.10= .72.1.
2

8.10 revrev ==
π

if θθ − 2

2
1 tt αω +=Using the angular kinematic formula

At t=2.00s

At t=3.00s

Angular 
displacement

2.00 2.00×
1 3.50 2.00
2

+ × 11.0rad=

2.00 3.00× ( )21 3.50 3.00
2

+ × 21.8rad=
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Relationship Between Angular and Linear Quantities
What do we know about a rigid object that rotates 

about a fixed axis of rotation?

When a point rotates, it has both the linear and angular motion 
components in its motion.  
What is the linear component of the motion you see?

v

Every particle (or masslet) in the object moves in a 
circle centered at the axis of rotation.

Linear velocity along the tangential direction.
How do we related this linear component of the motion 
with angular component?

l Rθ=The arc-length is So the tangential speed v is

What does this relationship tell you about 
the tangential speed of the points in the 
object and their angular speed?:

Although every particle in the object has the same 
angular speed, its tangential speed differs 
proportional to its distance from the axis of rotation.
The farther away the particle is from the center of 
rotation, the higher the tangential speed.

The 
direction 
of ω
follows a 
right-hand 
rule.

l
t

∆
=
∆

( )r
t

θ∆
=
∆

r
t
θ∆

=
∆

ωr=
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Example 8-3
(a) What is the linear speed of a child seated 1.2m from the center of 
a steadily rotating merry-go-around that makes one complete 
revolution in 4.0s? (b) What is her total linear acceleration?

First, figure out what the angular 
speed of the merry-go-around is.

v

1 2 1.6 /
4.0 4.0
rev rad rad s

s s
πϖ = = =

Using the formula for linear speed

Since the angular speed is constant, there is no angular acceleration.

Tangential acceleration is ta
Radial acceleration is ra
Thus the total 
acceleration is

a

rω= 1.2 1.6 / 1.9 /m rad s m s= × =

rα= 2 21.2 0 / 0 /m rad s m s= × =
2rϖ= ( )2 21.2 1.6 / 3.1 /m rad s m s= × =

2 2
t ra a= + ( )2 20 3.1 3.1 /m s= + =
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Rolling Motion of a Rigid Body
What is a rolling motion?

To simplify the discussion, let’s 
make a few assumptions

Let’s consider a cylinder rolling without slipping on a flat surface

A more generalized case of a motion where the 
rotational axis moves together with the object

Under what condition does this “Pure Rolling” happen?

The total linear distance the CM of the cylinder moved is

Thus the linear 
speed of the CM is

A rotational motion about the moving axis
1. Limit our discussion on very symmetric 

objects, such as cylinders, spheres, etc
2. The object rolls on a flat surface

R θ s

s=Rθ

θRs=

dt
dsvCM =

Condition for “Pure Rolling”
dt
dR θ

= ωR=
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More Rolling Motion of a Rigid Body

As we learned in the rotational motion, all points in a rigid body 
moves at the same angular speed but at a different linear speed.

At any given time the point that comes to P has 0 linear 
speed while the point at P’ has twice the speed of CM

The magnitude of the linear acceleration of the CM is

A rolling motion can be interpreted as the sum of Translation and Rotation

CMa

Why??
P

P’

CM
vCM

2vCM

CM is moving at  the same speed at all times.

P

P’

CM
vCM

vCM

vCM

+
P

P’

CM

v=Rω

v=0

v=Rω

=
P

P’

CM

2vCM

vCM

CMv
t

∆
=

∆
R

t
ω∆

=
∆

αR=
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Torque
Torque is the tendency of a force to rotate an object about an axis.  
Torque, τ, is a vector quantity.

≡τMagnitude of torque is defined as the product of the force 
exerted on the object to rotate it and the moment arm.

F
φ

d

Line of 
Action

Consider an object pivoting about the point P
by the force F being exerted at a distance r. 

P

r

Moment 
arm

The line that extends out of the tail of the force 
vector is called the line of action.
The perpendicular distance from the pivoting point 
P to the line of action is called Moment arm.

When there are more than one force being exerted on certain 
points of the object, one can sum up the torque generated by each 
force vectorially.  The convention for sign of the torque is positive if 
rotation is in counter-clockwise and negative if clockwise. 

d2

F2

21 τττ +=∑
2211 dFdF −=

=φsinrF Fd
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R1

Example for Torque
A one piece cylinder is shaped as in the figure with core section protruding from the 
larger drum.  The cylinder is free to rotate around the central axis shown in the picture.   
A rope wrapped around the drum whose radius is R1 exerts force F1 to the right on the 
cylinder, and another force exerts F2 on the core whose radius is R2 downward on the 
cylinder.  A) What is the net torque acting on the cylinder about the rotation axis?

The torque due to F1 111 FR−=τ

Suppose F1=5.0 N, R1=1.0 m, F2= 15.0 N, and R2=0.50 m.  What is the net torque 
about the rotation axis and which way does the cylinder rotate from the rest?

R2

F1

F2

and due to F2 222 FR=τ

Using the 
above result

=+=∑ 21 τττSo the total torque acting on 
the system by the forces is

2211 FRFR +−=∑τ The cylinder rotates in 
counter-clockwise.

2211 FRFR +−

mN •=×+×−= 5.250.00.150.10.5
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Torque & Angular Acceleration
Let’s consider a point object with mass m rotating on a circle.

What does this mean?

The tangential force Ft and radial force Fr

The tangential force Ft is

What do you see from the above relationship?

m
r

Ft

Fr

What forces do you see in this motion?

tt maF =

The torque due to tangential force Ft is rFt=τ

ατ I=
Torque acting on a particle is proportional to the angular acceleration.

What law do you see from this relationship? Analogs to Newton’s 2nd law of motion in rotation.

How about a rigid object?

r

dFt

dm

O

The external tangential force dFt is =tdF

=∑τ
The torque due to tangential force Ft is
The total torque is

=τd

What is the contribution due 
to radial force and why?

Contribution from radial force is 0, because its 
line of action passes through the pivoting 
point, making the moment arm 0.

αmr=

rmat= α2mr= αI=

=tdma αdmr

=rdFt ( )αdmr 2

=∫ dmr2α αI
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Moment of Inertia 
Rotational Inertia:

What are the dimension and 
unit of Moment of Inertia?

∑≡
i

iirmI 2

2mkg⋅[ ]2ML

Measure of resistance of an object to 
changes in its rotational motion.  
Equivalent to mass in linear motion.

Determining Moment of Inertia is extremely important for 
computing equilibrium of a rigid body, such as a building.

dmrI ∫≡ 2For a group 
of particles

For a rigid 
body
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Rotational Kinetic Energy
What do you think the kinetic energy of a rigid object 
that is undergoing a circular motion is? 

Since a rigid body is a collection of masslets, the total kinetic energy of the 
rigid object is

Since moment of Inertia, I, is defined as

Kinetic energy of a masslet, mi, 
moving at a tangential speed, vi, is

ri

mi

θ

O x

y vi

iK

RK

∑=
i

iirmI 2

2= ωIKR 2
1The above expression is simplified as

2

2
1

iivm= 2= ω2
2
1

iirm

∑=
i

iK ∑ 2=
i

iirm ω2
2
1 2⎟

⎠

⎞
⎜
⎝

⎛
= ∑ ω

i
iirm 2

2
1
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Example for Moment of Inertia
In a system consists of four small spheres as shown in the figure, assuming the radii are 
negligible and the rods connecting the particles are massless, compute the moment of 
inertia and the rotational kinetic energy when the system rotates about the y-axis at ω.

I

Since the rotation is about y axis, the moment of 
inertia about y axis, Iy, is

RKThus, the rotational kinetic energy is 

Find the moment of inertia and rotational kinetic energy when the system rotates on 
the x-y plane about the z-axis that goes through the origin O.

x

y

This is because the rotation is done about y axis, 
and the radii of the spheres are negligible.Why are some 0s?

M Ml l

m

m

b

b
O

I RK

2
i

i
irm∑= 2Ml= 22Ml=

2

2
1 ωI= ( ) 222

2
1 ωMl= 22ωMl=

2
i

i
irm∑= 2Ml= ( )222 mbMl += 2

2
1 ωI= ( ) 222 22

2
1 ωmbMl += ( ) 222 ωmbMl +=

2Ml+ 20m+ ⋅ 20m+ ⋅

2M l+ 2mb+ 2mb+
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Kinetic Energy of a Rolling Sphere

Since vCM=Rω

Let’s consider a sphere with radius R 
rolling down a hill without slipping.

=K

R

xh
θ

vCM

ω

21
2

CM
CM

vI
R

⎛ ⎞= ⎜ ⎟
⎝ ⎠

Since the kinetic energy at the bottom of the hill must 
be equal to the potential energy at the top of the hill

What is the speed of the 
CM in terms of known 
quantities and how do you 
find this out?

K

2
22

1
CM

CM vM
R
I

⎟
⎠
⎞

⎜
⎝
⎛ +=

2
22

1
CM

CM vM
R
I

⎟
⎠
⎞

⎜
⎝
⎛ += Mgh=

2/1
2

MRI
ghv

CM
CM +

=

21
2 CMI ω 2 21

2
MR ω+

21
2 CMMv+
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Conservation of Angular Momentum
Remember under what condition the linear momentum is conserved?

Linear momentum is conserved when the net external force is 0.

i fL L=

Three important conservation laws 
for isolated system that does not get 
affected by external forces

Angular momentum of the system before and 
after a certain change is the same.

By the same token, the angular momentum of a system 
is constant in both magnitude and direction, if the 
resultant external torque acting on the system is 0. 

iL

constp =

=∑ extτ

What does this mean?

Mechanical Energy

Linear Momentum

Angular Momentum

constL =

dt
pdF ==∑ 0

=
dt

Ld
0

fL= constant=

i fp p=

i i f fK U K U+ = +
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Similarity Between Linear and Rotational Motions
All physical quantities in linear and rotational motions show striking similarity.

Momentum
RotationalKineticKinetic Energy

Power
WorkWorkWork
TorqueForceForce

Acceleration
Speed

Angle     (Radian)DistanceLength of motion

Moment of InertiaMassMass
RotationalLinearQuantities

2I mr=

rv
t

∆
=
∆ t

θω ∆
=

∆
va
t

∆
=

∆ t
ωα ∆

=
∆

F ma= Iτ α=
cosW F d θ=

cosP Fv θ= τω=P

2

2
1 mvK = 2

2
1 ωIK R =

L
M

θ

W τθ=

vmp = ωIL =
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Conditions for Equilibrium
What do you think does the term “An object is at its equilibrium” mean?

∑ = 0F

The object is either at rest (Static Equilibrium) or its center of mass 
is moving with a constant velocity (Dynamic Equilibrium). 

Is this it?   

When do you think an object is at its equilibrium?

Translational Equilibrium: Equilibrium in linear motion 

The above condition is sufficient for a point-like particle to be at its static 
equilibrium.   However for object with size this is not sufficient.   One more 
condition is needed.  What is it? 

Let’s consider two forces equal magnitude but opposite direction acting 
on a rigid object as shown in the figure.   What do you think will happen?

CM
d

d

F

-F

The object will rotate about the CM. The net torque 
acting on the object about any axis must be 0. 

For an object to be at its static equilibrium, the object should not 
have linear or angular speed. 

∑ = 0τ

0=CMv 0=ω
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More on Conditions for Equilibrium
To simplify the problem, we will only deal with forces acting on x-y plane, giving torque 
only along z-axis.   What do you think the conditions for equilibrium be in this case? 

The six possible equations from the two vector equations turns to three equations.

What happens if there are many forces exerting on the object?

∑ = 0F ∑ = 0τ∑ = 0xF ∑ = 0zτ

O

F
1

F
4

F3

F 2

F5

r5 O’
r’

If an object is at its translational static equilibrium, 
and if the net torque acting on the object is 0 
about one axis, the net torque must be 0 about 
any arbitrary axis.

∑ = 0yF

Why is this true?
Because the object is not movingnot moving, no matter what 
the rotational axis is, there should not be a motion.  
It is simply a matter of mathematical calculation.
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Example for Mechanical Equilibrium
A uniform 40.0 N board supports a father and daughter weighing 800 N and 350 N, 
respectively.   If the support (or fulcrum) is under the center of gravity of the board and 
the father is 1.00 m from CoG, what is the magnitude of normal force n exerted on the 
board by the support?

Since there is no linear motion, this system 
is in its translational equilibriumF D

n
1m x

Therefore the magnitude of the normal force n

Determine where the child should sit to balance the system.
The net torque about the fulcrum 
by the three forces are τ
Therefore to balance the system 
the daughter must sit x

∑ xF 0=

∑ yF gM B= 0=gM F+ gM D+ n−

m
gM
gM

D

F 00.1⋅= mm 29.200.1
350
800

=⋅=

0⋅= gM B 00.1⋅+ gM F xgM D ⋅− 0=

N11903508000.40 =++=

MBg MFgMFg
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Example for Mech. Equilibrium Cont’d 
Determine the position of the child to balance the 
system for different position of axis of rotation.

Since the normal force is 

The net torque about the axis of 
rotation by all the forces are 

τ

Therefore x

n
The net torque can 
be rewritten 

τ

What do we learn?

No matter where the 
rotation axis is, net effect of 
the torque is identical.

F D
n

MBgMFg MFg

1m x

x/2

Rotational axis

2/xgM B ⋅= 0=
gMgMgM DFB ++=

( )2/00.1 xgM F +⋅+ 2/xn ⋅− 2/xgM D ⋅−

2/xgM B ⋅= ( )2/00.1 xgM F +⋅+

( ) 2/xgMgMgM DFB ⋅++− 2/xgM D ⋅−

xgMgM DF ⋅−⋅= 00.1 0=

m
gM
gM

D

F 00.1⋅= mm 29.200.1
350
800

=⋅=
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Example for Mechanical Equilibrium
A person holds a 50.0N sphere in his hand.   The forearm is horizontal.  The biceps 
muscle is attached 3.00 cm from the joint, and the sphere is 35.0cm from the joint.  Find 
the upward force exerted by the biceps on the forearm and the downward force exerted 
by the upper arm on the forearm and acting at the joint.  Neglect the weight of forearm.

∑ xF

Since the system is in equilibrium, from 
the translational equilibrium condition

From the rotational equilibrium condition

O

FB

FU
mg

d

l

∑τ

Thus, the force exerted by 
the biceps muscle is

dFB ⋅

Force exerted by the upper arm is UF

0=
∑ yF mgFF UB −−= 0=

lmgdFF BU ⋅−⋅+⋅= 0 0=
lmg ⋅=

BF
d

lmg ⋅
= N583

00.3
0.350.50
=

×
=

mgFB −= N5330.50583 =−=
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Example for Mechanical Equilibrium
A uniform horizontal beam with a length of 8.00m and a weight of 200N is attached to a wall 
by a pin connection.  Its far end is supported by a cable that makes an angle of 53.0o with the 
horizontal.  If 600N person stands 2.00m from the wall, find the tension in the cable, as well as 
the magnitude and direction of the force exerted by the wall on the beam.

∑ xF

From the rotational equilibrium

Using the 
translational 
equilibrium 

8m

53.0o

2m FBD

R T

600Ν 200Ν

53.0oθ

Tsin53
Tcos53

Rsinθ

Rcosθ

First the translational equilibrium, 
using components

∑τ

And the magnitude of R is 

R

θcosR= 0=

∑ yF θsinR= 0=

00.80.53sin ×= οT 0=
NT 313=

θcosR

θsinR

ο0.53cosT=

NNT 2006000.53sin ++−= ο

ο
ο

ο

7.71
0.53cos313

0.53sin313800tan 1 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−
= −θ θcos

0.53cos οT
= N582

1.71cos
0.53cos313
=

×
= ο

ο

ο0.53cosT−

ο0.53sinT+ N600− N200−

00.2600 ×− N mN 00.4200 ⋅−
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Example 9 – 9 
A 5.0 m long ladder leans against a wall at a point 4.0m above the ground.  The ladder is 
uniform and has mass 12.0kg.  Assuming the wall is frictionless (but ground is not), 
determine the forces exerted on the ladder by the ground and the wall.  

∑ xFFBD

First the translational equilibrium, 
using components

Thus, the y component of the force by the ground is

mg

FW

FGx

FGy

O

GyF

Gx WF F= − 0=

∑ yF Gymg F= − + 0=

mg= 12.0 9.8 118N N= × =

The length x0 is, from Pythagorian theorem
2 2

0 5.0 4.0 3.0x m= − =
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Example 9 – 9 cont’d
∑ OτFrom the rotational equilibrium 0 2 4.0Wmg x F= − + 0=

Thus the force exerted on the ladder by the wall is

WF

Thus the force exerted on the ladder by the ground is

Tx component of the force by the ground is
44Gx WF F N= =

GF

0 2
4.0

mg x
= 118 1.5 44

4.0
N⋅

= =

0x Gx WF F F= − =∑ Solve for FGx

2 2
Gx GyF F= + 2 244 118 130N= + ≈

The angle between the 
ladder and the wall is θ 1tan Gy

Gx

F
F

− ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
1 118tan 70

44
− ⎛ ⎞= =⎜ ⎟
⎝ ⎠
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How do we solve equilibrium problems?
1. Identify all the forces and their directions and locations
2. Draw a free-body diagram with forces indicated on it
3. Write down vector force equation for each x and y 

component with proper signs
4. Select a rotational axis for torque calculations Selecting 

the axis such that the torque from as many of the unknown 
forces become 0.

5. Write down torque equation with proper signs
6. Solve the equations for unknown quantities 
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Elastic Properties of Solids

strain
stressModulus Elastic ≡

We have been assuming that the objects do not change their 
shapes when external forces are exerting on it.   It this realistic?

No.  In reality, the objects get deformed as external forces act on it, 
though the internal forces resist the deformation as it takes place.

Deformation of solids can be understood in terms of Stress and Strain 
Stress: A quantity proportional to the force causing deformation. (Ultimate 
strength of a material) 
Strain: Measure of degree of deformation

It is empirically known that for small stresses, strain is proportional to stress

The constants of proportionality are called Elastic Modulus

Three types of 
Elastic Modulus

1. Young’s modulus: Measure of the elasticity in length
2. Shear modulus: Measure of the elasticity in plane
3. Bulk modulus: Measure of the elasticity in volume
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Young’s Modulus

A
Fex≡Stress Tensile

Let’s consider a long bar with cross sectional area A and initial length Li. 

Fex=Fin

Young’s Modulus is defined as

What is the unit of Young’s Modulus?

Experimental 
Observations

1. For fixed external force, the change in length is 
proportional to the original length

2. The necessary force to produce a given strain is 
proportional to the cross sectional area

Li

A:cross sectional area

Tensile stress

Lf=Li+∆LFex After the stretch FexFin

Tensile strain
iL
L∆

≡Strain Tensile

Y
Force per unit area

Used to characterize a rod  
or wire stressed under 
tension or compression

Elastic limit: Maximum stress that can be applied to the substance 
before it becomes permanently deformed

Strain Tensile
Stress Tensile

≡
i

ex

L
L

A
F

∆
=
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Strain Volume
Stress VolumeB ≡

iV
V

A
F

∆

∆
−=

iV
V

P
∆
∆

−=

Bulk Modulus

A
F

=≡
applies force  theArea Surface

Force NormalPressure

Bulk Modulus characterizes the response of a substance to uniform 
squeezing or reduction of pressure.

Bulk Modulus is 
defined as

Volume stress 
=pressure

After the pressure change

If the pressure on an object changes by ∆P=∆F/A, the object will 
undergo a volume change ∆V.

V V’
F

F
F

F
Compressibility is the reciprocal of Bulk Modulus

Because the change of volume is 
reverse to change of pressure.
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Example for Solid’s Elastic Property
A solid brass sphere is initially under normal atmospheric pressure of 1.0x105N/m2.  The 
sphere is lowered into the ocean to a depth at which the pressures is 2.0x107N/m2.  The 
volume of the sphere in air is 0.5m3.  By how much its volume change once the sphere is 
submerged?

The pressure change ∆P is

Since bulk modulus is

iV
V
P

∆
∆

−=B

The amount of volume change is
B

iPVV ∆
−=∆

From table 12.1, bulk modulus of brass is 6.1x1010 N/m2

757 100.2100.1100.2 ×≈×−×=−=∆ if PPP

Therefore the resulting 
volume change ∆V is

34
10

7

106.1
106.1

5.0100.2 mVVV if
−×−=

×
××

−=−=∆

The volume has decreased.
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Density and Specific Gravity
Density, ρ (rho) , of an object is defined as mass per unit volume 

V
M

≡ρ
Unit? 
Dimension? 

3/ mkg
][ 3−ML

Specific Gravity of a substance is defined as the ratio of the density 
of the substance to that of water at 4.0 oC (ρH2O=1.00g/cm3).

OH

SG
2

substance

ρ
ρ

≡ Unit? 
Dimension? 

None 
None 

What do you think would happen of a 
substance in the water dependent on SG?

1>SG
1<SG

Sink in the water
Float on the surface
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Fluid and Pressure
What are the three states of matter? Solid, Liquid, and Gas

Fluid cannot exert shearing or tensile stress.   Thus, the only force the fluid exerts 
on an object immersed in it is the forces perpendicular to the surfaces of the object.

A
FP ≡

How do you distinguish them? By the time it takes for a particular substance to 
change its shape in reaction to external forces.

What is a fluid? A collection of molecules that are randomly arranged and loosely
bound by forces between them or by the external container.

We will first learn about mechanics of fluid at rest, fluid statics. 

In what way do you think fluid exerts stress on the object submerged in it?

This force by the fluid on an object usually is expressed in the form of 
the force on a unit area at the given depth, the pressure, defined as

Note that pressure is a scalar quantity because it’s 
the magnitude of the force on a surface area A.

What is the unit and 
dimension of pressure?

Expression of pressure for an 
infinitesimal area dA by the force dF is

dFP
dA

=

Unit:N/m2

Dim.: [M][L-1][T-2]
Special SI unit for 
pressure is Pascal

2/11 mNPa ≡
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Example for Pressure
The mattress of a water bed is 2.00m long by 2.00m wide and 
30.0cm deep. a) Find the weight of the water in the mattress. 

The volume density of water at the normal condition (0oC and 1 atm) is 
1000kg/m3.  So the total mass of the water in the mattress is 

Since the surface area of the 
mattress is 4.00 m2, the 
pressure exerted on the floor is

m

P

Therefore the weight of the water in the mattress is 
W

b) Find the pressure exerted by the water on the floor when the bed 
rests in its normal position, assuming the entire lower surface of the 
mattress makes contact with the floor.

MWVρ= kg31020.1300.000.200.21000 ×=×××=

mg= N43 1018.18.91020.1 ×=××=

A
F

=
A

mg
= 3

4

1095.2
00.4

1018.1
×=

×
=
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Variation of Pressure and Depth
Water pressure increases as a function of depth, and the air pressure 
decreases as a function of altitude.   Why?

If the liquid in the cylinder is the same substance as the fluid, 
the mass of the liquid in the cylinder is 

MgAPPA −− 0

It seems that the pressure has a lot to do with the total mass of 
the fluid above the object that puts weight on the object.
Let’s imagine a liquid contained in a cylinder with height h and 
cross sectional area A immersed in a fluid of density ρ at rest, as 
shown in the figure, and the system is in its equilibrium.

The pressure at the depth h below the surface of a fluid 
open to the atmosphere is greater than atmospheric 
pressure by ρgh.

Therefore, we obtain

Atmospheric pressure P0 is
Paatm 510013.100.1 ×=

P0A

PAMg

h

M

Since the system is in its equilibrium

P

What else can you learn from this?

Vρ= Ahρ=

AhgAPPA ρ−−= 0 0=

ghP ρ+= 0
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Pascal’s Principle and Hydraulics
A change in the pressure applied to a fluid is transmitted undiminished 
to every point of the fluid and to the walls of the container.

The resultant pressure P at any given depth h increases as much as the change in P0. 

This is the principle behind hydraulic pressure. How?

Therefore, the resultant force F2 is

What happens if P0is changed?

P
Since the pressure change caused by the 
the force F1 applied on to the area A1 is 
transmitted to the F2 on an area A2.

ghPP ρ+= 0

This seems to violate some kind 
of conservation law, doesn’t it?

d1 d2
F1 A1

A2

F2

2F
In other words, the force gets multiplied by 
the ratio of the areas A2/A1 and is 
transmitted to the force F2 on the surface.

No, the actual displaced volume of the 
fluid is the same.  And the work done 
by the forces are still the same.

2F

1

1

A
F

=
2

2

A
F

=

1
2

1 F
d
d

=

1
1

2 F
A
A

=
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Example for Pascal’s Principle
In a car lift used in a service station, compressed air exerts a force on a small piston 
that has a circular cross section and a radius of 5.00cm.  This pressure is transmitted 
by a liquid to a piston that has a radius of 15.0cm.  What force must the compressed air 
exert to lift a car weighing 13,300N?  What air pressure produces this force?

P

Using the Pascal’s principle, one can deduce the relationship between the 
forces, the force exerted by the compressed air is

1F

Therefore the necessary pressure of the compressed air is

2
1

2 F
A
A

= ( )
( )

N34
2

2

1048.11033.1
05.0
15.0

×=××=
π
π

1

1

A
F

=
( )

Pa5
2

3

1088.11048.1
×=

0.05
×

=
π
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Example for Pascal’s Principle
Estimate the force exerted on your eardrum due to the water above 
when you are swimming at the bottom of the pool with a depth 5.0 m.

We first need to find out the pressure difference that is being exerted on 
the eardrum.  Then estimate the area of the eardrum to find out the 
force exerted on the eardrum.

0PP −

F

Since the outward pressure in the middle of the eardrum is the same 
as normal air pressure

Estimating the surface area of the eardrum at 1.0cm2=1.0x10-4 m2, we obtain

ghWρ= Pa4109.40.58.91000 ×=××=

( )APP 0−= N9.4100.1109.4 44 ≈×××≈ −
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Absolute and Relative Pressure
How can one measure pressure?

One can measure pressure using an open-tube manometer, 
where one end is connected to the system with unknown 
pressure P and the other open to air with pressure P0.

This is called the absolute pressure, because it is the 
actual value of the system’s pressure.

In many cases we measure pressure difference with respect to 
atmospheric pressure due to changes in P0 depending on the 
environment.   This is called gauge or relative pressure.

P

The common barometer which consists of a mercury column with one end closed at vacuum 
and the other open to the atmosphere was invented by Evangelista Torricelli.

Since the closed end is at vacuum, it 
does not exert any force.  1 atm is

0P

The measured pressure of the system is
h

P P0

0P P= −

ghP ρ+= 0

ghρ=

ghρ= )7600.0)(/80665.9)(/10595.13( 233 msmmkg×=

atmPa 110013.1 5 =×=

GP

If one measures the tire pressure with a gauge at 220kPa the actual pressure is 101kPa+220kPa=303kPa.
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Finger Holds Water in Straw
You insert a straw of length L into a tall glass of your favorite 
beverage.  You place your finger over the top of the straw so that 
no air can get in or out, and then lift the straw from the liquid.  You 
find that the straw strains the liquid such that the distance from the 
bottom of your finger to the top of the liquid is h.  Does the air in the 
space between your finder and the top of the liquid have a pressure 
P that is (a) greater than, (b) equal to, or (c) less than, the 
atmospheric pressure PA outside the straw?

What are the forces in this problem?

Gravitational force on the mass of the liquid

mg

Force exerted on the top surface of the liquid by inside air pressure

gF mg= ( )A L h gρ= −

inF inp A=

pinA

Force exerted on the bottom surface of the liquid by outside air outF Ap A= −

Since it is at equilibrium

pAA

out g inF F F+ + 0= ( ) 0A inp A g L h A p Aρ− + − + =

( )in Ap p g L hρ= − −Cancel A and 
solve for pin

Less

So pin is less than PA by ρgh.
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Buoyant Forces and Archimedes’ Principle
Why is it so hard to put a beach ball under water while a piece of small 
steel sinks in the water?

The water exerts force on an object immersed in the water.  
This force is called Buoyant force.

How does the 
Buoyant force work?

Let‘s consider a cube whose height is h and is filled with fluid and at its 
equilibrium. Then the weight Mg is balanced by the buoyant force B.

This is called, Archimedes’ principle. What does this mean?

The magnitude of the buoyant force always equals the weight of 
the fluid in the volume displaced by the submerged object.

B

BMg

h
And the pressure at the bottom of the 
cube is larger than the top by ρgh.

P∆Therefore,
Where Mg is the 
weight of the fluid.

gF= Mg=

AB /= ghρ=

B PA∆= ghAρ= Vgρ=

B gF= Vgρ= Mg=
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More Archimedes’ Principle
Let’s consider buoyant forces in two special cases. 

Let’s consider an object of mass M, with density ρ0, is 
immersed in the fluid with density ρf .

Case 1: Totally submerged object

The total force applies to different directions, depending on the 
difference of the density between the object and the fluid.

1. If the density of the object is smaller than the density of 
the fluid, the buoyant force will push the object up to the 
surface.

2. If the density of the object is larger that the fluid’s, the 
object will sink to the bottom of the fluid.

What does this tell you?

The magnitude of the buoyant force is

BMg

h

B
The weight of the object is gF

Therefore total force of the system is F

Vgfρ=

Mg= Vg0ρ=

gFB −= ( )Vgf 0ρρ −=
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More Archimedes’ Principle
Let’s consider an object of mass M, with density ρ0, is in 
static equilibrium floating on the surface of the fluid with 
density ρf , and the volume submerged in the fluid is Vf.

Case 2: Floating object

Since the object is floating its density is always smaller than 
that of the fluid. 

The ratio of the densities between the fluid and the object 
determines the submerged volume under the surface.

What does this tell you?

The magnitude of the buoyant force isBMg

h
B

The weight of the object is gF

Therefore total force of the system is F

Since the system is in static equilibrium gV ffρ

gV ffρ=

Mg= gV00ρ=

gFB −= gVgV ff 00ρρ −=

gV00ρ=

fρ
ρ 0

0V
V f=

0=
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Example for Archimedes’ Principle
Archimedes was asked to determine the purity of the gold used in the crown.   
The legend says that he solved this problem by weighing the crown in air and 
in water.  Suppose the scale read 7.84N in air and 6.86N in water.  What 
should he have to tell the king about the purity of the gold in the crown? 

In the air the tension exerted by the scale on 
the object is the weight of the crown airT

In the water the tension exerted 
by the scale on the object is 

waterT

Therefore the buoyant force B is B
Since the buoyant force B is B
The volume of the displaced 
water by the crown is cV

Therefore the density of 
the crown is cρ

Since the density of pure gold is 19.3x103kg/m3, this crown is either not made of pure gold or hollow. 

mg= N84.7=

Bmg−= N86.6=

waterair TT −= N98.0=

gVwwρ= gVcwρ= N98.0=

wV=
g
N

wρ
98.0

= 34100.1
8.91000

98.0 m−×=
×

=

c

c

V
m

=
gV
gm

c

c=
gVc

84.7
= 33

4 /103.8
8.9100.1

84.7 mkg×=
××

= −
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Example for Buoyant Force
What fraction of an iceberg is submerged in the sea water?

Let’s assume that the total volume of the iceberg is Vi.  
Then the weight of the iceberg Fgi is 

Since the whole system is at its 
static equilibrium, we obtain

giF

Let’s then assume that the volume of the iceberg 
submerged in the sea water is Vw.  The buoyant force B 
caused by the displaced water becomes 

B

gViiρ
Therefore the fraction of the 
volume of the iceberg 
submerged under the surface of 
the sea water is i

w

V
V

About 90% of the entire iceberg is submerged in the water!!!

gViiρ=

gVwwρ=

gVwwρ=

w

i

ρ
ρ

= 890.0
/1030
/917

3

3

==
mkg
mkg
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Flow Rate and the Equation of Continuity
Study of fluid in motion: Fluid Dynamics

If the fluid is water: 
•Streamline or Laminar flow: Each particle of the fluid 
follows a smooth path, a streamline w/o friction
•Turbulent flow: Erratic, small, whirlpool-like circles called 
eddy current or eddies which absorbs a lot of energy

Two main 
types of flow

Water dynamics?? Hydro-dynamics 

Flow rate: the mass of fluid that passes a given point per unit time /m t∆ ∆

since the total flow must be conserved

1m
t

∆
=

∆
1 1V

t
ρ ∆

=
∆

1 1 1A l
t

ρ ∆
=

∆ 1 1 1A vρ

1 1 1A vρ =1m
t

∆
=

∆

Equation of Continuity

2m
t

∆
∆ 2 2 2A vρ
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Example for Equation of Continuity
How large must a heating duct be if air moving at 3.0m/s along it can 
replenish the air every 15 minutes, in a room of 300m3 volume?  
Assume the air’s density remains constant.

Using equation of continuity

1 1 1A vρ =

Since the air density is constant
1 1A v =

Now let’s imagine the room as 
the large section of the duct

1A = 2 2

1

/A l t
v

= 2

1

V
v t

=
⋅

2300 0 .11
3 .0 900

m=
×

2 2 2A vρ

2 2A v

2 2

1

A v
v

=
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Bernoulli’s Equation
Bernoulli’s Principle: Where the velocity of fluid is high, the 
pressure is low, and where the velocity is low, the pressure is high. 

Amount of work done by the force, F1, 
that exerts pressure, P1, at point 1

1W =

Work done by the gravitational force to 
move the fluid mass, m, from y1 to y2 is

1 1F l∆ = 1 1 1P A l∆
Amount of work done on the other 
section of the fluid is

2W =

3W = ( )2 1mg y y− −

2 2 2P A l− ∆
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Bernoulli’s Equation cont’d

We 
obtain

2 2 1 1 1 1 2 2 2 2 1
2 2
2 1 1 2 2 11

1 1
2 2

A l A l A l A l A lv v P P g A ly gyρ ρ ρ ρ− = − − +∆ ∆ ∆ ∆ ∆ ∆

Re-
organize

2
1 1 1

1
2

P v gyρ ρ+ + = Bernoulli’s 
Equation

2
1 1 1

1
2

P v gyρ ρ+ + =

2
2 2 2

1
2

P v gyρ ρ+ +

2 2
2 1 1 2 2 1

1 1
2 2

v v P P gy gyρ ρ ρ ρ− = − − +

Since

Thus, for any two 
points in the flow

For static fluid 2P =

For the same heights ( )2 2
2 1 1 2

1
2

P P v vρ= + −

The pressure at the faster section of the fluid is smaller than slower section.

Pascal’s 
Law

.const

( )1 1 2P g y yρ+ − = 1P ghρ+
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Example for Bernoulli’s Equation
Water circulates throughout a house in a hot-water heating system.  If the water is 
pumped at a speed of 0.5m/s through a 4.0cm diameter pipe in the basement under 
a pressure of 3.0atm, what will be the flow speed and pressure in a 2.6cm diameter 
pipe on the second 5.0m above? Assume the pipes do not divide into branches.

Using the equation of continuity, flow speed on the second floor is

2v =

Using Bernoulli’s equation, the pressure in the pipe on the second floor is

2P =

( ) ( )5 3 2 2 313.0 10 1 10 0.5 1.2 1 10 9.8 5
2

= × + × − + × × × −

5 22.5 10 /N m= ×

1 1

2

A v
A

=
2

1 1
2

2

r v
r

π
π

=
20 .0200 .5 1 .2 /

0 .013
m s⎛ ⎞× =⎜ ⎟

⎝ ⎠

1P ( )2 2
1 2

1
2

v vρ+ − ( )1 2g y yρ+ −
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Vibration or Oscillation
What are the things 
that vibrate/oscillate?

A periodic motion that repeats over the same path.

A simplest case is a block attached at the end of a coil spring.

Acceleration is proportional to displacement from the equilibrium
Acceleration is opposite direction to displacement

• Tuning fork
• A pendulum
• A car going over a bump
• Building and bridges
• The spider web with a prey

So what is a vibration or oscillation?

kx−=F
The sign is negative, because the force resists against the 
change of length, directed toward the equilibrium position.

When a spring is stretched from its equilibrium 
position by a length x, the force acting on the mass is 

This system is doing a simple harmonic motion (SHM).
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Vibration or Oscillation Properties
The maximum displacement from 
the equilibrium is 

The complete to-and-fro motion from an initial point

One cycle of the oscillation

Amplitude

Period of the motion, T
The time it takes to complete one full cycle

Frequency of the motion, f

The number of complete cycles per second

Unit?

s-1Unit?

s

Relationship between 
period and frequency? f

T
1

= T
1
f

=or
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Vibration or Oscillation Properties

Amplitude? A
• When is the force greatest?
• When is the velocity greatest?
• When is the acceleration greatest?
• When is the potential energy greatest?
• When is the kinetic energy greatest?
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Example 11-1

(a)  

Car springs. When a family of four people with a total mass of 200kg step into their 
1200kg car, the car’s springs compress 3.0cm. (a) What is the spring constant of the 
car’s spring, assuming they act as a single spring?  (b) How far will the car lower if loaded 
with 300kg? 

200 9.8 1960F mg N= = ⋅ =What is the force on the spring? 

From Hooke’s law

(b)

F kx= −

Now that we know the spring constant, we can solve for x in the force equation

F kx= −

k

0.03k= − ⋅ 1960mg N= − =
gF

x
= mg

x
= 41960 6.5 10 /

0.03
N m= = ×

x

mg= − 300 9.8= − ⋅

mg
k

= 2
4

300 9.8 4.5 10
6.5 10

m−⋅
= = ×

×
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Energy of the Simple Harmonic Oscillator
How do you think the mechanical energy of the harmonic oscillator look without friction?
Kinetic energy of a 
harmonic oscillator is
The elastic potential energy stored in the spring

Therefore the total mechanical energy 
of the harmonic oscillator is 

KE
PE

E

Total mechanical energy of a simple harmonic oscillator is 
proportional to the square of the amplitude.

2

2
1 mv=

2

2
1 kx=

PEKE+= 2 21 1
2 2

mv kx= +
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Energy of the Simple Harmonic Oscillator cont’d
Maximum KE is 
when PE=0 maxKE

The speed at any given 
point of the oscillation E

2
max2

1 mv= 2

2
1

Α= k

PEKE += 22

2
1

2
1 kxmv += 2

2
1

Α= k

v ( )22 xAmk −+=
2

max 1 xv
A

⎛ ⎞= ± − ⎜ ⎟
⎝ ⎠

x
A-A

KE/PE E=KE+PE=kA2/2

Maximum speed maxv = k A
m
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Example 11-3
Spring calculations.  A spring stretches 0.150m when a 0.300-kg mass is hung from it.  
The spring is then stretched an additional 0.100m from this equilibrium position and 
released. 

From Hooke’s law

0.100A m=

0.300 9.8F kx mg N= − = − = − ⋅

(a) Determine the spring constant.

(b) Determine the amplitude of the oscillation.

Since the spring was stretched 0.100m from 
equilibrium, and is given no initial speed, the 
amplitude is the same as the additional stretch.

0.300 9.8 19.6 /
0.150

mgk N m
x

⋅
= = =



Wednesday, May 5, 2004 PHYS 1441-004, Spring 2004
Dr. Jaehoon Yu

60

Example cont’d

Maximum acceleration is at the point where the mass is stopped to return.

a

(c) Determine the maximum velocity vmax.

maxv = k A
m

19.6 0.100 0.808 /
0.300

m s= =

(d) Determine the magnitude of velocity, v, when the mass is 0.050m from equilibrium. 

v
2

m a x 1 xv
A

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

20 .0 5 00 .8 0 8 1 0 .7 0 0 /
0 .1 0 0

m s⎛ ⎞= − =⎜ ⎟
⎝ ⎠

(d) Determine the magnitude of the maximum acceleration of the mass. 

kA
m

= 219.6 0.100 6.53 /
0.300

m s⋅
= =

F ma= kA= Solve for a
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Example for Energy of Simple Harmonic Oscillator
A 0.500kg cube connected to a light spring for which the force constant is 20.0 N/m oscillates on a 
horizontal, frictionless track.  a) Calculate the total energy of the system and the maximum speed 
of the cube if the amplitude of the motion is 3.00 cm.

The total energy of 
the cube is E

From the problem statement, A and k are mNk /0.20=

Maximum speed occurs when kinetic energy is the same as the total energy

2
maxmax 2

1 mvKE =

mcmA 03.000.3 ==

PEKE +=
2

2
1 kA= ( ) ( ) J32 1000.903.00.20

2
1 −×=×=

E= 2

2
1 kA=

maxv
m
kA= sm /190.0

500.0
0.2003.0 ==
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Example for Energy of Simple Harmonic Oscillator
b) What is the velocity of the cube when the displacement is 2.00 cm.

velocity at any given 
displacement is

v

c) Compute the kinetic and potential energies of the system when the displacement is 
2.00 cm.

Kinetic 
energy, KE

KE

Potential 
energy, PE PE

( )22 xAmk −=

( ) sm/141.0500.0/02.003.00.20 22 =−⋅=

2

2
1 mv= ( ) J32 1097.4141.0500.0

2
1 −×=×=

2

2
1 kx= ( ) J32 1000.402.00.20

2
1 −×=×=
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Sinusoidal Behavior of SHM
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The Period and Sinusoidal Nature of SHM

v0

Consider an object moving on a circle with a constant angular speed ω

If you look at it from the side, it looks as though it is doing a SHM

sinθ
2

0 1 xv v
A

⎛ ⎞= −⎜ ⎟
⎝ ⎠

0v
0

2 AT
v
π

=

2
0

1
2

mv

2 mT
k

π=
1 1

2
kf

T mπ
= =

Since it takes T to 
complete one full 
circular motion
From an energy 
relationship in a 
spring SHM

0
kv A
m

=

Thus, T is

Natural Frequency

0

v
v

=
2 2A x
A
−

=
2

1 x
A

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

2 A
T
π

= 2 Afπ=

21
2

kA=
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Example 11-5
Car springs. When a family of four people with a total mass of 200kg step into their 
1200kg car, the car’s springs compress 3.0cm. The spring constant of the spring is 
6.5x104N/m.  What is the frequency of the car after hitting the bump?  Assume that the 
shock absorber is poor, so the car really oscillates up and down. 

f

T 2 m
k

π= 4

14002 0.92
6.5 10

sπ= =
×

1
T

=
1

2
k
mπ

=
41 6.5 10 1.09

2 1400
Hz

π
×

= =
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Example 11-6
Spider Web. A small insect of mass 0.30 g is caught in a spider web of negligible mass.  
The web vibrates predominantly with a frequency of 15Hz. (a) Estimate the value of the 
spring constant k for the web.

f

(b) At what frequency would you expect the web to vibrate if an insect of mass 0.10g 
were trapped?

f

k

Solve for k1
2

k
mπ

= 15Hz=

2 24 mfπ= ( )22 44 3 10 15 2.7 /N mπ −= ⋅ × ⋅ =

1
2

k
mπ

= 4

1 2.7 26
2 1 10

Hz
π −= =

×
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The SHM Equation of Motion

v0

The object is moving on a circle with a constant angular speed ω
How is x, its position at any given time expressed with the known quantities?

cosx A θ= tθ ϖ=
cosx A tϖ=

since

cos 2A ftπ=
How about its velocity v at any given time? 

2 fϖ π=and

v 0 sinv θ= − ( )0 sinv tϖ= − ( )0 sin 2v ftπ= −
How about its acceleration a at any given time? 

0
kv A
m

=

a F
m

=
kx
m
−

= ( )cos 2kA ft
m

π⎛ ⎞= − ⎜ ⎟
⎝ ⎠

( )0 cos 2a ftπ= −From Newton’s 2nd law

0
kAa
m

=
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Sinusoidal Behavior of SHM

( )cos 2x A ftπ= ( )0 sin 2v v ftπ= −

( )0 cos 2a a ftπ= −
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The Simple Pendulum
A simple pendulum also performs periodic motion.

The net force exerted on the bob is 
∑ rF

x Lθ=

Satisfies conditions for simple harmonic motion!
It’s almost like Hooke’s law with.

Since the arc length, x, is  

tF F= =∑
mgk
L

=

The period for this motion is T

The period only depends on the length of the string and the gravitational acceleration

AmgT θcos−= 0=

∑ tF Amg θsin−= mgθ≈ −

mg x
L

−

2 m
k

π= 2 mL
mg

π= 2 L
g

π=
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Example 11-8
Grandfather clock. (a) Estimate the length of the pendulum in a grandfather clock that 
ticks once per second.  

Since the period of a simple 
pendulum motion is T

The length of the pendulum 
in terms of T is 2

2

4π
gTL =

Thus the length of the 
pendulum when T=1s is 

2

24
T gL
π

=

g
Lπ2=

(b) What would be the period of the clock with a 1m long pendulum?

g
Lπ2=T 1.02 2.0

9.8
sπ= =

2

1 9.8 0.25
4

m
π
×

= =
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Damped Oscillation
More realistic oscillation where an oscillating object loses its mechanical 
energy in time by a retarding force such as friction or air resistance.

How do you think the 
motion would look?

Amplitude gets smaller as time goes on since its energy is spent.

Types of damping
A: Overdamped
B: Critically damped
C: Underdamped
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Forced Oscillation; Resonance
When a vibrating system is set into motion, it oscillates with its natural 
frequency f0.

However a system may have an external force applied to it that has 
its own particular frequency (f), causing forced vibration.

For a forced vibration, the amplitude of vibration is found to be dependent 
on the different between f and f0. and is maximum when f=f0.

A: light damping
B: Heavy damping
The amplitude can be large when 
f=f0, as long as damping is small.

This is called resonance.  The natural 
frequency f0 is also called resonant frequency.

0
1

2
kf
mπ

=
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Wave Motions
Waves do not move medium rather carry energy 

from one place to another

Two forms of waves
– Pulse
– Continuous or 

periodic wave
Mechanical Waves
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Characterization of Waves
• Waves can be characterized by

– Amplitude: Maximum height of a crest or the depth of a trough
– Wave length: Distance between two successive crests or any 

two identical points on the wave
– Period: The time elapsed by two successive crests passing by 

the same point in space.
– Frequency: Number of crests that pass the same point in space 

in a unit time 
• Wave velocity: The velocity at which any part of the 

wave moves
v

T
λ

= fλ=
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Waves vs Particle Velocity
Is the velocity of a wave moving along a cord the 

same as the velocity of a particle of the cord? 

No.  The two velocities are 
different both in magnitude 
and direction.   The wave 
on the rope moves to the 
right but each piece of the 
rope only vibrates up and 
down. 



Wednesday, May 5, 2004 PHYS 1441-004, Spring 2004
Dr. Jaehoon Yu

76

Speed of Transverse Waves on Strings
How do we determine the speed of a transverse pulse traveling on a string?
If a string under tension is pulled sideways and released, the tension is responsible for 
accelerating a particular segment of the string back to the equilibrium position.

The speed of the wave increases.

So what happens when the tension increases? 

Which law does this hypothesis based on?

Based on the hypothesis we have laid out 
above, we can construct a hypothetical 
formula for the speed of wave 

For the given tension, acceleration decreases, so the wave speed decreases.

Newton’s second law of motion

The acceleration of the 
particular segment increases 

µ
Tv =

Which means? 

Now what happens when the mass per unit length of the string increases? 

T: Tension on the string
µ: Unit mass per length

Is the above expression dimensionally sound? T=kg m/s2. µ=kg/m
(T/µ)1/2=[m2/s2]1/2=m/s

T
m L

=
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Example for Traveling Wave
A uniform cord has a mass of 0.300kg and a length of 6.00m.  The cord passes over a 
pulley and supports a 2.00kg object.  Find the speed of a pulse traveling along this cord.

Thus the speed of the wave is

Since the speed of wave on a string with line 
density µ and under the tension T is 

T

M=2.00kg

1.00m
5.00m

µ
Tv =

The line density µ is mkg
m
kg /1000.5

00.6
300.0 2−×==µ

The tension on the string is 
provided by the weight of the 
object.  Therefore

v T
µ

= 2

19.6 19.8 /
5.00 10

m s−= =
×

Mg= 22.00 9.80 19.6 /kg m s= × = ⋅
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Type of Waves
• Two types of waves

– Transverse Wave : A wave whose media particles move 
perpendicular to the direction of the wave

– Longitudinal wave: A wave whose media particles move 
along the direction of the wave

• Speed of a longitudinal wave Elastic Force Factor
inertia factor

v =

Ev
ρ

=For solid E:Young’s modulus
ρ: density of solid

Bv
ρ

=liquid/gas E: Bulk Modulus
ρ: density
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Example 11 – 11
Sound velocity in a steel rail.  You can often hear a distant train approaching by putting 
your ear to the track.  How long does it take for the wave to travel down the steel track if 
the train is 1.0km away?  

The speed of the wave is

v
E
ρ

=

The time it takes for the wave to travel is

t l
v

=
3

3

1.0 10 0.20
5.1 10 /

m s
m s

×
= =

×

11 2
3

3 3

2.0 10 / 5.1 10 /
7.8 10 /

N m m s
kg m

×
= = ×

×
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Energy Transported by Waves 
Waves transport energy from one place to another.

As waves travel through a medium, the energy is transferred as vibrational energy 
from particle to particle of the medium. 

For a sinusoidal wave of frequency f, the particles move in 
SHM as a wave passes.  Thus each particle has an energy

Energy transported by a wave is proportional to the square of the amplitude.

21
2

E kA=

Intensity of wave is defined as the power transported across 
unit area perpendicular to the direction of energy flow. I

/energy time
area

=
power
area

=

2I A∝Since E is 
proportional to A2.

For isotropic medium, the 
wave propagates radially 24

power PI
area rπ

= =
I1 I2

2
2 2

2
1 1

4
4

I P r
I P r

π
π

=
Ratio of intensities at 
two different radii is 

2 1

1 2

A r
A r

=Amplitude

2

1

2

r
r

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
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Example 11 – 12
Earthquake intensity.  If the intensity of an earthquake P wave 100km from the source is 
1.0x107W/m2, what is the intensity 400km from the source?

Since the intensity decreases as the square of the distance from the source,
2

2 1

1 2

I r
I r

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

The intensity at 400km can be written in terms of the intensity at 100km

2I
2

1
1

2

r I
r

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

2
7 2 5 2100 1.0 10 / 6.2 10 /

400
km W m W m
km

⎛ ⎞= × = ×⎜ ⎟
⎝ ⎠
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Reflection and Transmission
A pulse or a wave undergoes various changes when the medium 
it travels changes.
Depending on how rigid the support is, two radically different reflection 
patterns can be observed. 

1. The support is rigidly fixed (a): The reflected pulse will be inverted to the original 
due to the force exerted on to the string by the support  in reaction to the force on 
the support due to the pulse on the string.

2. The support is freely moving (b): The reflected pulse will maintain the original 
shape but moving in the reverse direction. 
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2 and 3 dimensional waves and the Law of 
Reflection

The Law of Reflection: 
The angle of reflection 
is the same as the 
angle of incidence.

• Wave fronts: The whole width of 
wave crests

• Ray: A line drawn in the direction 
of motion, perpendicular to the 
wave fronts.

• Plane wave: The waves whose 
fronts are nearly straight 

θi=θr
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Transmission Through Different Media
If the boundary is intermediate between the previous two extremes, 
part of the pulse reflects, and the other undergoes transmission, 
passing through the boundary and propagating in the new medium.

When a wave pulse travels from medium A to B:
1. vA> vB (or µA<µB), the pulse is inverted upon reflection 
2. vA< vB(or µΑ>µΒ), the pulse is not inverted upon reflection
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Superposition Principle of Waves
Superposition 
Principle

If two or more traveling waves are moving through a 
medium, the resultant wave function at any point is the 
algebraic sum of the wave functions of the individual waves.
The waves that follow this principle are called linear waves which in general have 
small amplitudes.  The ones that don’t are nonlinear waves with larger amplitudes.

Thus, one can write the 
resultant wave function as 

y nyyy +⋅⋅⋅++= 21 ∑
=

=
n

i
iy

1
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Wave Interferences

What do you think will happen to the water 
waves when you throw two stones in the pond? 

Two traveling linear waves can pass through each other without being destroyed or altered.

What happens to the waves at the point where they meet? 

They will pass right through each other.

The shape of wave will 
change Interference

Constructive interference: The amplitude increases when the waves meet 
Destructive interference: The amplitude decreases when the waves meet 

In phase constructive Out of phase by π/2 destructive Out of phase not by π/2 
Partially destructive


