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PHYS 3446 – Lecture #2
Monday, Jan. 24, 2005

Dr. Jae Yu

1. Introduction
2. History on Atomic Models
3. Rutherford Scattering
4. Rutherford Scattering with Coulomb force
5. Scattering Cross Section
6. Measurement of Cross Sections
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Announcements
• World scientific acquired 30 copies of the book
• You might want to make sure that the book store knows you 

want a copy
• Until the book comes, the author generously allowed us to copy 

the relevant part of the book and use it.
• I have five subscribed the distribution list.  You still have time for 

5 extra credit points…
• Class assignments:

– W eν+X: James, Carlos, Justin and Elisha
– W µν+X: Jeremy, Jay, Jason and Jim
– Z ee+X: Casey, David and Mathew
– Z µµ+X: John, Jacom and Sabine

• Your accounts will soon be created and a new machine for your 
login will be available at the end of the week.

Most importantly… We should have fun in the class!
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Why do Physics?
• To understand nature through experimental 

observations and measurements (Research)
• Establish limited number of fundamental laws, usually 

with mathematical expressions
• Predict the nature’s course
⇒Theory and Experiment work hand-in-hand
⇒Theory works generally under restricted conditions
⇒Discrepancies between experimental measurements 

and theory are good for improvements
⇒Improves our everyday lives, though some laws can 

take a while till we see amongst us

Exp.{
Theory {
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High Energy Physics

Structure of Matter
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Theory for Microscopic Scale, 
Quantum Mechanics

• Since we deal with extremely small objects, it is difficult to explain the 
phenomena with classical mechanics and Electro-magnetism

• The study of atomic structure, thus, led us to quantum mechanics
Extremely successful
– Long range EM force is responsible for holding atom together
– EM force is sufficiently weak so that the properties of atoms can be estimated 

reliably based on perturbative QM calculations 
• However, when we step into nucleus regime, the simple Coulomb 

force does not work since the force in nucleus holds positively charged 
particles together

• The known forces in nature
– Strong ~ 1 
– Electro-magnetic ~ 10-2

– Weak ~ 10-5

– Gravitational ~ 10-38
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Evolution of Atomic Models
• 1897: J.J. Thompson 

Discovered electrons
• 1904: J.J. Thompson 

Proposed a “plum 
pudding” model of 
atoms Negatively 
charged electrons 
embedded in a uniformly 
distributed positive 
charge
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History of Atomic Models
• 1911: Geiger and 

Marsden with 
Rutherford perform a 
scattering 
experiment with 
alpha particles shot 
on a thin gold foil
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History of Atomic Models
• 1912: Rutherford 

proposes atomic model 
with a positively 
charged core 
surrounded by electrons
– Rutherford postulated a 

heavy nucleus with 
electrons circulating it 
like planets around the 
sun

– Deficiency of instability
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History of Atomic Models
• 1913: Neils

Bohr proposed 
a quantified 
electron orbit
– Electrons can 

only transition 
to pre-defined 
orbits
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History of Atomic Models

• 1926: Schrodinger
proposed an electron 
cloud model based on 
quantum mechanics



Monday, Jan. 24, 2005 PHYS 3446, Spring 2005
Jae Yu

11

Rutherford Scattering
• A fixed target experiment with alpha particle as 

projectile shot on thin gold foil
– Alpha particle’s energy is low Speed is well 

below 0.1c (non-relativistic)
• An elastic scattering of the particles
• What are the conserved quantities in an elastic 

scattering?
– Momentum
– Kinetic Energy
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Elastic Scattering

• From momentum conservation

• From kinetic energy conservation

• From these two, we obtain
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The Analysis
• If mt<<mα, 

– left-hand side become positive
– vα and vt must be the same direction
– Using the actual masses

– If mt=me, then mt/mα~10-4. 
– Thus, pe/pα0<10-4. 
– Change of momentum of alpha particle is negligible 
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The Analysis
• If mt>>mα, 

– left-hand side become negative
– vα and vt is opposite direction
– Using the actual masses

– If mt=me, then mt/mα~50. 
– Thus, pe/pα0~2pα0. 
– Change of momentum of alpha particle is large.  
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Rutherford Scattering with EM Force 1
• We did not take into account electro-magnetic force 

between the alpha particle and the atom
• Coulomb force is a central force and thus a conservative 

force
• Coulomb potential between particles with Ze and Z’e

electrical charge separated by distance r is

• Since the total  energy is conserved, 
( )
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Rutherford Scattering with EM Force 2
• The distance vector r is always the 

same direction as the force 
throughout the entire motion, net 
torque (rxF) is 0.

• Since there is no net torque, the 
angular momentum (l=rxp) is 
conserved. The magnitude of 
the angular momentum is l=mvb.

2 22 2 2l m E mb b mE b l mE= = ⇒ =
• From energy relation, we obtain

• From the definition of angular momentum, we obtain an equation of 
motion 

• From energy conservation, we obtain another equation of motion
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Rutherford Scattering with EM Force 3
• Rearranging the terms, we obtain

• and

• Integrating this from r0 to infinity gives the angular 
distribution of the outgoing alpha particle 
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Rutherford Scattering with EM Force 4
• What happens at the DCA?

– Kinetic energy reduces to 0.

– The incident alpha could turn around and accelerate
– We can obtain 

– This allows us to determine DCA for a given potential and χ0.
• Define scattering angle q as the changes in the asymptotic 

angles of the trajectory, we obtain
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Rutherford Scattering with EM Force 5
• For a Coulomb potential 

• DCA can be obtained for a given impact parameter b,

• And the angular distribution becomes
( )
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Rutherford Scattering with EM Force 6
• Replace the variable 1/r=x, and performing the 

integration, we obtain 

• This can be rewritten

• Solving this for b, we obtain
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Rutherford Scattering with EM Force 7

• From the solution for b, we can learn the following 
1. For fixed b. E and Z’

– The scattering is larger for a larger value of Z.
– Makes perfect sense since Coulomb potential is stronger with larger Z.
– Results in larger deflection.

2. For a fixed b, Z and Z’
– The scattering angle is larger when E is smaller.

– If particle has low energy, its velocity is smaller
– Spends more time in the potential, suffering greater deflection

3. For fixed Z, Z’, and E
– The scattering angle is larger for smaller impact parameter b

– Makes perfect sense also, since as the incident particle is closer to the 
nucleus, it feels stronger Coulomb force.
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Assignments
1. Compute the masses of electron and alpha 

particles in MeV/c2.
2. Compute the gravitational and the Coulomb forces 

between two protons separated by 10-10m and 
compare their strengths

3. Drive the following equations in your book:
• Eq. # 1.3, 1.16, 1.19, 1.25, 1.32

• These assignments are due next Monday, Jan. 31.


