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PHYS 3446 – Lecture #4
Monday, Jan. 31, 2005

Dr. Jae Yu

1. Lab Frame and Center of Mass Frame
2. Relativistic Treatment
3. Feynman Diagram
4. Quantum Treatment of Rutherford Scattering
5. Nuclear Phenomenology: Properties of Nuclei
6. A few measurements of differential cross sections
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Announcements
• I still have eleven subscribed the distribution list.  
• I really hate doing this but since this is the primary class 

communication tool, it is critical for all of you to subscribe.
– I will assign -3 points to those of you not registered by the class 

Wednesday
• A test message will be sent out Wednesday
• Must take the radiation safety training!!!

– Directly related to your lab score 15% of the total
• Homework extra credit: 5 points if done by the class after 

the assignment!
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Scattering Cross Section
• For a central potential, measuring the yield as a function of θ, 

or differential cross section, is equivalent to measuring the 
entire effect of the scattering 

• So what is the physical meaning of the differential cross 
section?

⇒ Measurement of yield as a function of specific experimental 
variable

⇒This is equivalent to measuring the probability of certain 
process in a specific kinematic phase space

• Cross sections are measured in the unit of barns:
-24 21 barn = 10 cm
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• Transverse 
mass 
distribution of 
electrons in 
W+X events 

Example Cross Section: W( eν) +X
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• Invariant 
mass 
distribution of 
electrons in 
Z+X events 

Example Cross Section: W( ee) +X
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Lab Frame and Center of Mass Frame
• We assumed that the target nuclei do not move through 

the collision
• In reality, they recoil as a result of scattering 
• Sometimes we use two beams of particles for scattering 

experiments (target is moving)
• This situation could be complicated but..
• Could be simplified if the motion can be described in 

Center of Mass frame under a central potential
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Lab Frame and CM Frame
• The equations of 

motion can be written
( )1 1 1 1 2m r V r r= −∇ −

( )2 2 2 1 2m r V r r= −∇ −

ˆ ˆ
ˆ ;   1,2

sin
i i

i i
i i i i i i

r i
r r r

θ φ
θ θ φ

∂ ∂ ∂
∇ = + + =

∂ ∂ ∂where
Since the potential depends only on relative separation of the particles, we 

redefine new variables

1 2r r r= −
CMR =and 1 1 2 2

1 2

m r m r
m m

+
+
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Lab Frame and CM Frame
• From the equations in previous slides

( )1 2 0CM CMm m R MR+ = =and

• What do we learn from this exercise?
• For a central potential, the motion of the two particles can be 

decoupled when re-written in terms of 
– a relative coordinate
– The coordinate of center of mass

1 2

1 2

m m r
m m

≡
+

Thus ˆconstant CMR R=

Reduced 
Mass

rµ = ( )V r−∇ =
( ) ˆ

V r
r

r
∂

−
∂
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Lab Frame and CM Frame
• The CM is moving at a constant speed in Lab frame 

independent of the form of the central potential
• The motion is as if that of a fictitious particle with 

reduced mass µ and coordinate r.
• In the frame where CM is stationary, the dynamics 

becomes equivalent to that of a single particle of mass 
µ scattering of a fixed, scattering center.

• Frequently we define the Center of Mass frame as the 
frame where the sum of the momenta of the 
interacting particles vanish.
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Relationship of variables in Lab and CMS

• The speed of CM is

• Speeds of particles in CMS are

• The momenta of the two particles are equal and opposite!!

1 1

1 2
CM CM

m vv R
m m

= =
+

2 1
1 1

1 2
CM

m vv v v
m m

= − =
+

CMS

1 1
2

1 2
CM

m vv v
m m

= =
+

and
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Scattering angles in Lab and CMS

1cos cosLab CM CMv v vθ θ− =

1sin sinLab CMv vθ θ=

1

sintan
sin

CM
Lab

CM CMv v
θ

θ
θ

= =
+ 1 2

sin
sin

CM

CM m m
θ

θ
=

+
sin

sin
CM

CM

θ
θ ζ+

� θCM represents the changes in the direction of the relative 
position vector r as a result of the collision 

• Thus, it must be identical to the scattering angle for the 
particle with the reduced mass, µ.

• Z components of the velocities of particle with m1 in lab and 
CMS are:

• The perpendicular components of the velocities are: 

• Thus, the angles are related, for elastic scattering only, as:
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Differential cross sections in Lab and CMS
• The particles scatter at an angle θLab into solid angle dΩLab

in lab scatters into θCM into solid angle dΩCM in CM.
• Since φ is invariant, dφLab = dφCM.

– Why?
� φ is perpendicular to the direction of boost, thus is invariant.

• Thus, the differential cross section becomes:
( ) ( )sin sinLab Lab Lab CM CM CM

Lab CM

d dd d
d d
σ σθ θ θ θ θ θ=
Ω Ω

( ) ( ) ( )
( )
cos
cos

CM
Lab CM

Lab CM Lab

dd d
d d d

θσ σθ θ
θ

=
Ω Ωrewrite

Using Eq. 1.53 ( ) ( )
( )3/221 2 cos

1 cos
CM

Lab CM
Lab CM CM

d d
d d

ζ θ ζσ σθ θ
ζ θ

+ +
=

Ω Ω +

Using Eq. 1.53
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Relativistic Variables
• Velocity of CM in the scattering of two particles 

with rest mass m1 and m2 is: 

• If m1 is the mass of the projectile and m2 is that of 
the target, for fixed target we obtain

( )1 2

1 2

CM
CM

P P cv
c E E

β
+

= =
+

CMβ = 1

1 2

Pc
E E

=
+

1
2 2 2 4 2

1 1 2

Pc

P c m c m c+ +
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Relativistic Variables
• At very low energies where m1c2>>P1c, the velocity 

reduces to:

• At very high energies where m1c2<<P1c and 
m2c2<<P1c , the velocity can be written as:

( )
1 1 1 1

2 2
1 21 2

CM
m v c m v

m m cm c m c
β = =

++

CM CMβ β= =
22 2

1 2

1 1

1

1 m c m c
Pc Pc

≈
⎛ ⎞

+ +⎜ ⎟
⎝ ⎠

2
2 1

1 1

11
2

m c m c
P P

⎛ ⎞
− − ⎜ ⎟

⎝ ⎠
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Relativistic Variables
• For high energies, if m1~m2, 

� γCM becomes:

• And

• Thus γCM becomes

2
2

1
1CM

m c
P

β
⎛ ⎞

≈ −⎜ ⎟
⎝ ⎠

( ) ( )( )
1 2

1/ 2 1/ 22 2 1

1 2
1 1 1 2

2CMCM CM CM
m c P
P m c

γ β β β
−

− − ⎡ ⎤⎛ ⎞
⎡ ⎤= − ≈ − + ≈ =⎢ ⎥⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦

( )
2 4 2 2 4

2 1 1 2 2
22

1 2

21 CM
m c E m c m c

E m c
β + +

− =
+

( )
21/ 22 1 2

2 4 2 2 4
1 1 2 2

1
2CMCM

E m c

m c E m c m c
γ β

− +
= − =

+ +
Invariant 
Scalar: s
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Relativistic Variables
• The invariant scalar, s, is defined as:

• In the CMS frame

• Thus,         represents the total available energy in 
the CMS

( ) ( )22 2
1 2 1 2s E E P P c= + − +
2 4 2 4 2
1 2 1 22m c m c E m c= + +

2 4 2 4 2
1 2 1 22s m c m c E m c= + +

( ) ( )22 2
1 2 1 2CM CM CM CME E P P c= + − +

( )2
1 2CM CME E= + ( )2CM

ToTE=

s
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Useful Invariant Scalar Variables
• Another invariant scalar, t, the momentum transfer, is useful 

for scattering:

• Since momentum and energy are conserved in all collisions, 
t can be expressed in terms of target variables

• In CMS frame for an elastic scattering, where 
Pi

CM=Pf
CM=PCM and Ei

CM=Ef
CM:

( ) ( )2 2 2
1 1 1 1
f i f it E E P P c= − − −

( ) ( )2 2 2
2 2 2 2
f i f it E E P P c= − − −

( )22 2 2
1 1 1 12f i f i
CM CMt P P P P c= − + − ⋅ = ( )2 22 1 cos .CM CMP c θ− −

What does 
this variable 
look like?
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Feynman Diagram
• The variable t is always negative for an elastic scattering
• The variable t could be viewed as the square of the invariant 

mass of a particle with                   and                   exchanged 
in the scattering

• While the virtual particle cannot be detected in the scattering,
the consequence of its exchange can be calculated and 
observed!!!

2 2
f iE E−

2 2
f iP P−

Time

t-channel 
diagram
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Useful Invariant Scalar Variables
• For convenience we define a variable q2,
• In the lab frame               , thus we obtain:

• In the non-relativistic limit:

• q2 represents “hardness of the collision”. Small θCM
corresponds to small q2.

2 2q c t= −

( ) ( )2 22 2 2
2 2 2
f f
Lab Labq c E m c P c⎡ ⎤= − − −⎢ ⎥⎣ ⎦

2 0i
LabP =

( )2 2
2 2 22 f

Labm c E m c= − 2
2 22 f

Labm c T=

2
2 2 2

1
2

f
LabT m v≈



Monday, Jan. 31, 2005 PHYS 3446, Spring 2005
Jae Yu

20

Relativistic Scattering Angles in Lab and CMS 
• For a relativistic scattering, the relationship between the 

scattering angles in Lab and CMS is:

• For Rutherford scattering (m=m1<<m2, v~v0<<c):

• Divergence at q2~0, a characteristics of a Coulomb field
• There are distribution of q2 in Rutherford scattering which 

falls off rapidly

( )
sintan

sin
CM

Lab
CM CM CM

β θ
θ

γ β θ β
=

+

( )
2

2 22 cos P ddq P d θ
π
Ω

= − =

( )22

2 2 4

4 ' 1ZZ ed
dq v q

πσ
=Resulting in a 

cross section
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Assignments
1. Derive the following equations:

• Eqs. 1.51, 1.53, 1.55, 1.63, 1.71
• Prove Eq. 1.45
• Derive Eq. 1.51 from Eq. 1.71 in its non-relativistic limit 

2. Compute the available CMS energy (     ) for
• Fixed target experiment with masses m1 and m2 with incoming 

energy E1.
• Collider experiment with masses m1 and m2 with incoming 

energies E1 and E2.
3. Reading assignment: Section 1.7 
4. End of chapter problems:

• 1.1 and 1.7
• These assignments are due next Monday, Feb. 7.

s


