PHYS 3446 – Lecture #4

Monday, Jan. 31, 2005 Dr. **Jae** Yu

- 1. Lab Frame and Center of Mass Frame
- 2. Relativistic Treatment
- 3. Feynman Diagram
- 4. Quantum Treatment of Rutherford Scattering
- 5. Nuclear Phenomenology: Properties of Nuclei
- 6. A few measurements of differential cross sections

Announcements

- I still have eleven subscribed the distribution list.
- I really hate doing this but since this is the primary class communication tool, it is critical for all of you to subscribe.
 - I will assign -3 points to those of you not registered by the class Wednesday
- A test message will be sent out Wednesday
- Must take the radiation safety training!!!
 - Directly related to your lab score \rightarrow 15% of the total
- Homework extra credit: 5 points if done by the class after the assignment!

Scattering Cross Section

- For a central potential, measuring the yield as a function of θ, or differential cross section, is equivalent to measuring the entire effect of the scattering
- So what is the physical meaning of the differential cross section?
- ⇒ Measurement of yield as a function of specific experimental variable
- ⇒This is equivalent to measuring the probability of certain process in a specific kinematic phase space
- Cross sections are measured in the unit of barns:

$1 \text{ barn} = 10^{-24} \text{ cm}^2$

Lab Frame and Center of Mass Frame

- We assumed that the target nuclei do not move through the collision
- In reality, they recoil as a result of scattering
- Sometimes we use two beams of particles for scattering experiments (target is moving)
- This situation could be complicated but..
- Could be simplified if the motion can be described in Center of Mass frame under a central potential

Lab Frame and CM Frame

Since the potential depends only on relative separation of the particles, we redefine new variables

$$\vec{r} = \vec{r_1} - \vec{r_2}$$
 and $\vec{R}_{CM} = \frac{m_1 \vec{r_1} + m_2 \vec{r_2}}{m_1 + m_2}$

Monday, Jan. 31, 2005

PHYS 3446, Spring 2005 Jae Yu

Lab Frame and CM Frame

• From the equations in previous slides

- What do we learn from this exercise?
- For a central potential, the motion of the two particles can be decoupled when re-written in terms of

a relative coordinate

The coordinate of center of mass

Lab Frame and CM Frame

- The CM is moving at a constant speed in Lab frame independent of the form of the central potential
- The motion is as if that of a fictitious particle with reduced mass μ and coordinate r.
- In the frame where CM is stationary, the dynamics becomes equivalent to that of a single particle of mass μ scattering of a fixed, scattering center.
- Frequently we define the Center of Mass frame as the frame where the sum of the momenta of the interacting particles vanish.

Relationship of variables in Lab and CMS

Lab Frame

CM Frame

- The speed of CM is $v_{CM} = \dot{R}_{CM} = \frac{m_1 v_1}{m_1 + m_2}$
- Speeds of particles in CMS are

$$\tilde{v}_1 = v_1 - v_{CM} = \frac{m_2 v_1}{m_1 + m_2}$$
 and $\tilde{v}_2 = v_{CM} = \frac{m_1 v_1}{m_1 + m_2}$

• The momenta of the two particles are equal and opposite!!

Monday, Jan. 31, 2005

PHYS 3446, Spring 2005 Jae Yu

Scattering angles in Lab and CMS

- \Box θ_{CM} represents the changes in the direction of the relative position vector r as a result of the collision
- Thus, it must be identical to the scattering angle for the particle with the reduced mass, $\mu.$
- Z components of the velocities of particle with m_1 in lab and CMS are:

$$v\cos\theta_{Lab} - v_{CM} = \tilde{v}_1\cos\theta_{CM}$$

• The perpendicular components of the velocities are:

$$v\sin\theta_{Lab} = \tilde{v}_1\sin\theta_{CM}$$

• Thus, the angles are related, for elastic scattering only, as:

$$\tan \theta_{Lab} = \frac{\sin \theta_{CM}}{\sin \theta_{CM} + v_{CM} / \tilde{v}_1} = \frac{\sin \theta_{CM}}{\sin \theta_{CM} + m_1 / m_2} = \frac{\sin \theta_{CM}}{\sin \theta_{CM} + \zeta}$$
Monday, Jan. 31, 2005 PHYS 3446, Spring 2005 Jae Yu PHYS 346, Spring 2005 Jae Y

Differential cross sections in Lab and CMS

- The particles scatter at an angle θ_{Lab} into solid angle $d\Omega_{Lab}$ in lab scatters into θ_{CM} into solid angle $d\Omega_{CM}$ in CM.
- Since ϕ is invariant, $d\phi_{Lab} = d\phi_{CM}$.
 - Why?
 - $\Box \ \phi$ is perpendicular to the direction of boost, thus is invariant.
- Thus, the differential cross section becomes: $\frac{d\sigma}{d\Omega_{Lab}}(\theta_{Lab})\sin\theta_{Lab}d\theta_{Lab} = \frac{d\sigma}{d\Omega_{CM}}(\theta_{CM})\sin\theta_{CM}d\theta_{CM}$ rewrite $\frac{d\sigma}{d\Omega_{Lab}}(\theta_{Lab}) = \frac{d\sigma}{d\Omega_{CM}}(\theta_{CM})\frac{d(\cos\theta_{CM})}{d(\cos\theta_{Lab})}$ Using Eq. 1.53 $\frac{d\sigma}{d\Omega_{Lab}}(\theta_{Lab}) = \frac{d\sigma}{d\Omega_{CM}}(\theta_{CM})\frac{(1+2\zeta\cos\theta_{CM}+\zeta^2)^{3/2}}{|1+\zeta\cos\theta_{CM}|}$ Monday, Jan. 31, 200 PHYS 2444. Section 2005 Using Eq. 1.53 12

 Velocity of CM in the scattering of two particles with rest mass m₁ and m₂ is:

$$\frac{\vec{v}_{CM}}{c} = \vec{\beta}_{CM} = \frac{\left(\vec{P}_1 + \vec{P}_2\right)c}{E_1 + E_2}$$

 If m₁ is the mass of the projectile and m₂ is that of the target, for fixed target we obtain

$$\vec{\beta}_{CM} = \frac{\vec{P}_1 c}{E_1 + E_2} = \frac{\vec{P}_1 c}{\sqrt{P_1^2 c^2 + m_1^2 c^4} + m_2 c^2}$$

At very low energies where m₁c²>>P₁c, the velocity reduces to:

$$\vec{\beta}_{CM} = \frac{m_1 \vec{v}_1 c}{m_1 c^2 + m_2 c^2} = \frac{m_1 \vec{v}_1}{(m_1 + m_2)c}$$

• At very high energies where $m_1c^2 << P_1c$ and $m_2c^2 << P_1c$, the velocity can be written as:

$$\beta_{CM} = \left|\vec{\beta}_{CM}\right| = \frac{1}{\sqrt{1 + \left(\frac{m_1 c^2}{P_1 c}\right)^2} + \frac{m_2 c^2}{P_1 c}} \approx 1 - \frac{m_2 c}{P_1} - \frac{1}{2} \left(\frac{m_1 c}{P_1}\right)^2$$

Monday, Jan. 31, 2005

PHYS 3446, Spring 2005 Jae Yu

• For high energies, if $m_1 \sim m_2$, $\beta_{CM} \approx \left(1 - \frac{m_2 c}{P_1}\right)^2$ $\Box \gamma_{CM}$ becomes: $\gamma_{CM} = \left(1 - \beta_{CM}^2\right)^{-1/2} \approx \left[\left(1 - \beta_{CM}\right)\left(1 + \beta_{CM}\right)\right]^{-1/2} \approx \left[2\left(\frac{m_2 c}{P_1}\right)\right]^{-1/2} = \sqrt{\frac{P_1}{2m_2 c}}$ And $1 - \beta_{CM}^2 = \frac{m_1^2 c^4 + 2E_1 m_2 c^2 + m_2^2 c^4}{\left(E_1 + m_2 c^2\right)^2}$ • Thus γ_{CM} becomes $\gamma_{CM} = \left(1 - \beta_{CM}^2\right)^{-1/2} = \frac{E_1 + m_2 c^2}{\sqrt{m_1^2 c^4 + 2E_1 m_2 c^2 + m_2^2 c^4}}$ Invariant

PHYS 3446, Spring 2005

Jae Yu

Scalar: s

• The invariant scalar, s, is defined as:

$$s = (E_1 + E_2)^2 - (\vec{P}_1 + \vec{P}_2)^2 c^2$$
$$= m_1^2 c^4 + m_2^2 c^4 + 2E_1 m_2 c^2$$

• In the CMS frame

$$s = m_1^2 c^4 + m_2^2 c^4 + 2E_1 m_2 c^2$$

= $(E_{1CM} + E_{2CM})^2 - (\vec{P}_{1CM} + \vec{P}_{2CM})^2 c^2$
= $(E_{1CM} + E_{2CM})^2 = (E_{ToT}^{CM})^2$

• Thus, \sqrt{s} represents the total available energy in the CMS

Useful Invariant Scalar Variables

• Another invariant scalar, t, the momentum transfer, is useful for scattering:

$$t = \left(E_1^f - E_1^i\right)^2 - \left(\vec{P}_1^f - \vec{P}_1^i\right)^2 c^2$$

 Since momentum and energy are conserved in all collisions, t can be expressed in terms of target variables

$$t = \left(E_2^f - E_2^i\right)^2 - \left(\vec{P}_2^f - \vec{P}_2^i\right)^2 c^2$$

What does this variable look like?

• In CMS frame for an elastic scattering, where $P_{CM}^{i}=P_{CM}^{f}=P_{CM}$ and $E_{CM}^{i}=E_{CM}^{f}$:

$$t = -\left(P_{1CM}^{f\,2} + P_{1CM}^{i\,2} - 2\vec{P}_{1}^{f\,f} \cdot \vec{P}_{1}^{i\,}\right)^{2}c^{2} = -2P_{CM}^{2}c^{2}\left(1 - \cos\theta_{CM}\right).$$

Feynman Diagram

- The variable t is always negative for an elastic scattering
- The variable t could be viewed as the square of the invariant mass of a particle with $E_2^f E_2^i$ and $\vec{P}_2^f \vec{P}_2^i$ exchanged in the scattering

• While the virtual particle cannot be detected in the scattering, the consequence of its exchange can be calculated and observed!!!

Useful Invariant Scalar Variables

- For convenience we define a variable q^2 , $q^2c^2 = -t$
- In the lab frame $\vec{P}_{2Lab}^i = 0$, thus we obtain:

$$q^{2}c^{2} = -\left[\left(E_{2Lab}^{f} - m_{2}c^{2}\right)^{2} - \left(P_{2Lab}^{f}c\right)^{2}\right]$$
$$= 2m_{2}c^{2}\left(E_{2Lab}^{f} - m_{2}c^{2}\right) = 2m_{2}c^{2}T_{2Lab}^{f}$$

- In the non-relativistic limit: $T_{2Lab}^{f} \approx \frac{1}{2}m_{2}v_{2}^{2}$
- q² represents "hardness of the collision". Small θ_{CM} corresponds to small q².

Relativistic Scattering Angles in Lab and CMS

- For a relativistic scattering, the relationship between the scattering angles in Lab and CMS is:
- $\tan \theta_{Lab} = \frac{\tilde{\beta} \sin \theta_{CM}}{\gamma_{CM} \left(\tilde{\beta} \sin \theta_{CM} + \beta_{CM}\right)}$ • For Rutherford scattering (m=m₁<<m₂, V~V₀<<c): $dq^{2} = -2P^{2}d \left(\cos \theta\right) = \frac{P^{2}d\Omega}{\pi}$ Resulting in a $\frac{d\sigma}{dq^{2}} = \frac{4\pi \left(ZZ'e^{2}\right)^{2}}{v^{2}}\frac{1}{q^{4}}$
 - Divergence at q²~0, a characteristics of a Coulomb field
- There are distribution of q² in Rutherford scattering which falls off rapidly

Assignments

- 1. Derive the following equations:
 - Eqs. 1.51, 1.53, 1.55, 1.63, 1.71
 - Prove Eq. 1.45
 - Derive Eq. 1.51 from Eq. 1.71 in its non-relativistic limit
- 2. Compute the available CMS energy (\sqrt{s}) for
 - Fixed target experiment with masses m_1 and m_2 with incoming energy E_1 .
 - Collider experiment with masses m_1 and m_2 with incoming energies E_1 and E_2 .
- 3. Reading assignment: Section 1.7
- 4. End of chapter problems:
 - 1.1 and 1.7
- These assignments are due next Monday, Feb. 7.

