
Monday, Jan. 31, 2005 PHYS 3446, Spring 2005
Jae Yu

1

PHYS 3446 – Lecture #5
Wednesday, Feb. 2, 2005

Dr. Jae Yu

1. Nuclear Phenomenology
2. Properties of Nuclei

• Labeling
• Masses
• Sizes
• Nuclear Spin and Dipole Moment
• Stability and Instability of Nuclei

3. Nature of the Nuclear Force
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Announcements
• I have only one more to go on the distribution list.  

– A test message will be sent out this afternoon
• I asked you to derive a few equations for you to

– Understand the physics behind such calculations
– To follow through the complete calculations yourselves 

once in your life
• You must keep up with the homework

– HW constitutes 15% of your grade!!!
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Nuclear Phenomenology
• Rutherford scattering experiment clearly demonstrated the 

existence of a positively charged central core in an atom
• The formula deviated for high energy α particles (E>25MeV), 

especially for low Z nuclei.
• 1920’s James Chadwick noticed serious discrepancies 

between Coulomb scattering expectation and the elastic 
scattering of α particle on He.

• None of the known effects, including quantum effect, 
described the discrepancy.

• Clear indication of something more than Coulomb force 
involved in the interactions.

• Before Chadwick’s discovery of neutron in 1932, people 
thought nucleus contain protons and electrons. We now 
know that there are protons and neutrons (nucleons) in nuclei.
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• The nucleus of an atom X can be labeled uniquely by its:
– Electrical Charge or atomic number Z (number of protons).
– Total number of nucleons A (=Np+Nn)

• Isotopes: Nuclei with the same Z but different A
– Same number of protons but different number of neutrons
– Have similar chemical properties

• Isobars: Nuclei with same A but different Z
– Same number of nucleons but different number of protons

• Isomers or resonances of the ground state: Excited nucleus 
to a higher energy level

• Mirror nuclei: Nuclei with the same A but with switched Np
and Nn

Properties of Nuclei: Labeling 

A ZX
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• A nucleus of           has Np=Z and Nn=A-Z
• Naively one would expect

• Where mp~938.27MeV/c2 and mn=939.56MeV/c2

• However measured mass turns out to be

• This is one of the explanations for nucleus not falling apart 
into its nucleon constituents

Nuclear Properties: Masses of Nuclei
A ZX

( ),M A Z =

( ) ( ), p nM A Z Zm A Z m< + −

( )p nZm A Z m+ −
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• The mass deficit

• Is always negative and is proportional to the nuclear 
binding energy

• How are the BE and mass deficit related? 

• What is the physical meaning of BE?
– A minimum energy required to release all nucleons from 

a nucleus

Nuclear Properties: Binding Energy

( ),M A Z∆ =

( ) 2. ,B E M A Z c= ∆

( ),M A Z ( )p nZm A Z m− − −
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• BE per nucleon is

Nuclear Properties: Binding Energy

B BE
A A

−
=

( ) 2,M A Z c
A

−∆
=

( ) ( )( ) 2,p nZm A Z m M AZ c

A

+ − −
=

• Rapidly increase with A till 
A~60 at which point BE~9MeV.

• A>60, the B.E gradually 
decrease For most the 
large A nucleus, BE~8MeV.
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• de Broglie’s wavelength:
– Where      is the Planck’s constant
– And      is the reduced wave length

• Assuming 8MeV was given to a nucleon (m~940MeV), 
the wavelength is

• Makes sense for nucleons to be inside a nucleus since 
the size is small.

• If it were electron with 8MeV, the wavelength is ~10fm, 
a whole lot larger than a nucleus.

Nuclear Properties: Binding Energy

p
=

p
= =

2mT
=

2

197 1.6
2 940 82

c Mev fm fm
mc T

−
≈ ≈

⋅ ⋅
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• Sizes of subatomic particles are not as crisp clear as 
normal matter
– Must be treated quantum mechanically via probability 

distributions or expectation values
– Atoms: The average coordinate of the outermost electron 

and calculable
– Nucleus: Not calculable and must be relied on 

experimental measurements
• For Rutherford scattering of low E projectile

– DCA provides an upper bound on the size of a nucleus
– These result in RAu<3.2x10-12cm or RAg<2x10-12cm

Nuclear Properties: Sizes

2
min
0

'ZZ er
E

=
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• Scatter very high E projectiles for head-on collisions
– As E increases DCA becomes 0.
– High E particles can probe deeper into nucleus 

• Use electrons to probe the charge distribution (form 
factor) in a nucleus
– What are the advantages of using electrons?

• Electrons are fundamental particles No structure of their own
• Electrons primarily interact through electromagnetic force 
• Electrons do not get affected by the nuclear force

– The radius of charge distribution can be regarded as an 
effective size of the nucleus

Nuclear Properties: Sizes
2

min
0

'ZZ er
E

=
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• At relativistic energies the magnetic moment of 
electron also contributes to the scattering
– Neville Mott formulated Rutherford scattering in QM and 

included the spin effects
– R. Hofstadter, et al., discovered effect of spin, nature of 

nuclear (& proton) form factor in late 1950s  
• Mott scattering x-sec (scattering of a point particle) is 

related to Rutherford x-sec:

• Deviation from the distribution expected for point-
scattering provides a measure of size (structure)

Nuclear Properties: Sizes

24cos
2Mott Rutherford

d d
d d
σ θ σ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠
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• Another way is to use the strong nuclear force using sufficiently 
energetic strongly interacting particles (π mesons or protons, etc)
– What is the advantage of using these particles?

• If energy is high, Coulomb interaction can be neglected
• These particles readily interact with nuclei, getting “absorbed” into the nucleus

– These interactions can be treated the same way as the light absorptions resulting 
in diffraction, similar to that of light passing through gratings or slits

• The size of a nucleus can be inferred from the diffraction pattern
• From all these phenomenological investigation provided the simple 

formula for the radius of the nucleus to its number of nucleons or 
atomic number, A: 

Nuclear Properties: Sizes

1 3
0R r A= ≈

How would you interpret this formula?

13 1 3 1 31.2 10 1.2 fmA cm A−× =
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• Both protons and neutrons are fermions with spins ½.
• Nucleons inside a nucleus can have orbital angular 

momentum
• In QM orbital angular momenta are integers
• Thus the total angular momenta of the nucleus are

– Integers: if even number of nucleons in the nucleus
– Half integers: if odd number of nucleons in the nucleus

• Interesting facts are
– All nucleus with even number of p and n are spin 0.
– Large nuclei have very small spins in their ground state

• Hypothesis: Nucleon spins in the nucleus are very strongly 
paired to minimize their overall effect

Nuclear Properties: Spins
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• Every charged particle has a magnetic dipole 
moment associated with its spin

• e, m and S are the charge, mass and the intrinsic 
spin of the charged particle

• Constant g is called Lande factor with its value:
– : for a point like particle, such as the electron
– : Particle possesses an anomalous magnetic 

moment, an indication of having a substructure 

Nuclear Properties: Magnetic Dipole Moments

2
eg S
mc

µ =

2g ≠

2g =
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• For electrons, µe~µB, where µB is Bohr Magneton

• For nucleons, magnetic dipole moment is measured in nuclear 
magneton, defined using proton mass

• Magnetic moment of proton and neutron are:

• What important information do you get from these?
– The Lande factors of the nucleons deviate significantly from 2.

• Strong indication of substructure
– An electrically neutral neutron has a significant magnetic moment

• Must have extended charge distributions
• Measurements show that mangetic moment of nuclei lie -3µN~10µN

– Indication of strong pairing
– Electrons cannot reside in nucleus

Nuclear Properties: Magnetic Dipole Moments
115.79 10  MeV/T

2B
e

e
m c

µ −= = ×

2N
p

e
m c

µ =

2.79p Nµ µ≈ 1.91n Nµ µ≈ −
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• The number of protons and 
neutrons inside the stable 
nuclei are
– A<40: Equal (N=Z)
– A>40: N~1.7Z
– Neutrons out number protons
– Most are even-p + even–n

• See table 2.1
– Support strong pairing 

Nuclear Properties: Stability
N~1.7Z

N=Z
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• H. Becquerel discovered 
natural radioactivity in 1896 
via an accident

• Nuclear radio activity 
involves emission of three 
radiations: α, β, and γ

• These can be characterized 
using the device on the right
� α: Nucleus of He
� β: electrons
� γ: photons

Nuclear Properties: Instability

• What do you see from 
above?
� α and β are charged 

particles while γ is neutral.
� α is mono-energetic
� β has broad spectrum

• What else do you see?
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Assignments
1. Compute the mass density of a nucleus.

• Pick two nucleus for this.  I would like you guys to do 
different ones.

2. Compute the de Broglie wavelengths for 
• Protons in Fermilab’s Tevatron Collider
• Protons in CERN’s Large Hadron Collider (LHC)
• 500 GeV electrons in a Linear Collider

3. Compute the actual value of the nuclear magneton
• Due for these homework problems is next 

Wednesday, Feb. 9.


