1. Nuclear Models
 • Shell Model Predictions
 • Collective Model
 • Super-deformed nuclei

2. Nuclear Radiation
 • Alpha Decay
 • Beta Decay
 • Gamma Decay
Announcements

- All of you have been given accounts at a DPCC computer
 - Please pick up your account sheet and bring it to Wednesday tutorial
- Tutorial Wednesday
 - Takes place in SH203
 - Gather in SH200 first and move to the next door
 - Your Mav-express cards will allow you access to SH203 for your projects after today
- Quiz results
 - Top score: 67
 - Average: 38.5
- First term exam
 - Date and time: 1:00 – 2:30pm, Monday, Feb. 21
 - Location: SH125
 - Covers: Appendix A (special relativity) + CH1 – CH4.4
Nuclear Models

• **Liquid Droplet Model:**
 - Ignore individual nucleon quantum properties
 - Assume spherical shape of nuclei
 - A core with saturated nuclear force + loosely bound surface nucleons
 - Describes BE of light nuclei reasonably well

• **Fermi Gas Model:**
 - Assumes nucleus as a gas of free protons and neutrons confined to the nuclear volume
 - Takes into account quantum effects w/ discrete nucleon energy levels
 - Accounts for strong spin pairing of nucleons

• **Shell Model**
 - Takes into account individual nucleon quantum properties
 - Needed to postulate a few potential shapes for nucleus
 - The model using spin-orbit potential seems reproduce all the desired magic numbers
Predictions of the Shell Model

• Spin-Parity of large number of odd-A nuclei predicted well
 – Nucleons obey Pauli exclusion principle \(\Rightarrow\) Fill up ground state energy levels in pairs
 – Ground state of all even-even nuclei have zero total angular momentum

• Single particle shell model cannot predict odd-odd nuclei spins
 – No prescription for how to combine the unpaired proton and neutron spins
Predictions of the Shell Model

• Magnetic Moment of neutron and proton are
 \[\mu_p \approx 2.79 \mu_N \quad \mu_n \approx -1.91 \mu_N \]

• Intrinsic magnetic moment of unpaired nucleon to contribute to total magnetic moment of nuclei
 – Deuteron
 \[\mu_D = \mu_p + \mu_n = 2.79 \mu_N - 1.91 \mu_N = 0.88 \mu_N \]
 • Measured value is \(\mu_D = 0.86 \mu_N \)
 – For Boron \(^{10}\text{B}^5\), the neutrons and protons have the same level structure: \((1S_{1/2})^2(1P_{3/2})^3\), leaving one of each unpaired and one proton in angular momentum \(l=1\) state
 \[\mu_B = \mu_p + \mu_n + \mu_{\text{orbit}} = 2.79 \mu_N - 1.91 \mu_N + \mu_N = 1.88 \mu_N \]
 • Measured value is \(\mu_B = 1.80 \mu_N \)

• Does not work well with heavy nuclei
Collective Model

• For heavy nuclei, shell model predictions do not agree with experimental measurements
 – Especially in magnetic dipole moments
• Measured values of quadrupole moments for closed shells differ significantly with experiments
 – Some nuclei’s large quadrupole moments suggests significant nonspherical shapes
 – The assumption of rotational symmetry in shell model does not seem quite right
• These deficiencies are somewhat covered through the reconciliation of liquid drop model with Shell model
 – Bohr, Mottelson and Rainwater’s collective model, 1953
Collective Model

• Assumption
 – Nucleus consists of hard core of nucleons in filled shells
 – Outer valence nucleons behave like the surface molecules in a liquid drop
 – Non-sphericity of central core caused by the surface motion of the valence nucleon
• Thus, in collective model, the potential is a shell model with a spherically asymmetric potential
 – Aspherical nuclei can produce additional energy levels upon rotation while spherical ones cannot
• Important predictions of collective model:
 – Existence of rotational and vibrational energy levels in nuclei
 – Accommodate decrease of spacing between first excite state and the ground level for even-even nuclei as A increases, since moment of inertia increases with A
 – Spacing is largest for closed shell nuclei, since they tend to be spherical
Super-deformed Nuclei

- Nuclei tend to have relatively small intrinsic spins
- Particularly stable nuclei predicted for A between 150 and 190 with spheroidal character
 - Semi-major axis about a factor of 2 larger than semi-minor
- Heavy ion collisions in late 1980s produced super-deformed nuclei with angular momentum of $\sim 60\hbar$
- The energy level spacings of these observed through photon radiation seem to be essentially fixed
- Different nuclei seem to have identical emissions as they spin down
- Problem with collective model and understanding of strong pairing of nucleon binding energy
- Understanding nuclear structure still in progress
Nuclear Radiation: Alpha Decay

• Represents the disintegration of a parent nucleus to a daughter through an emission of a He nucleus

• Reaction equation is

\[^A_XZ \rightarrow ^{A-4}_YZ^{-2} + ^4He^2 \]

\(\alpha \)-decay is a spontaneous fission of the parent nucleus into two daughters of highly asymmetric masses

• Assuming parent at rest, from the energy conservation

\[M_Pc^2 = M_Dc^2 + T_D + M_\alpha c^2 + T_\alpha \]

• Can be re-written as

\[T_D + T_\alpha = (M_P - M_D - M_\alpha)c^2 = \Delta Mc^2 \]
Nuclear Radiation: Alpha Decay

- Since electron masses cancel, we could use atomic mass expression

\[T_D + T_\alpha = \left(M(A, Z) - M(A-4, Z-2) - M(4, 2) \right) c^2 \equiv Q \]

- This is the definition of the disintegration energy or Q-value
 - Difference of rest masses of the initial and final states
 - Q value is equal to the sum of the final state kinetic energies

- For non-relativistic particles, KE are

\[T_D = \frac{1}{2} M_D v_D^2 \quad T_\alpha = \frac{1}{2} M_\alpha v_\alpha^2 \]
Nuclear Radiation: Alpha Decay

- Since the parent is at rest, from the momentum conservation
 \[M_D v_D = M_\alpha v_\alpha \quad v_D = \frac{M_\alpha}{M_D} v_\alpha \]

- If \(M_D \gg M_\alpha, \ v_D \ll v_\alpha \), then \(T_D \ll T_\alpha \)

- We can write the relationship of KE and Q-value as
 \[T_D + T_\alpha = \frac{1}{2} M_D v_D^2 + \frac{1}{2} M_\alpha v_\alpha^2 = \frac{1}{2} M_D \left(\frac{M_\alpha}{M_D} v_\alpha \right)^2 + \frac{1}{2} M_\alpha v_\alpha^2 \]

\[T_D + T_\alpha = T_\alpha \frac{M_\alpha + M_D}{M_D} \]

\[T_\alpha = \frac{M_D}{M_\alpha + M_D} Q \]

- \(T_\alpha \) is unique for the given nuclei

- Direct consequence of 2-body decay of a rest parent
Nuclear Radiation: Alpha Decay

- KE of the emitted α must be positive
- Thus for an α-decay to occur, it must be an exothermic process $\Delta M \geq 0$, $Q \geq 0$
- For massive nuclei, the daughter’s KE is

$$T_D = Q - T_\alpha = \frac{M_\alpha}{M_\alpha + M_D} Q = \frac{M_\alpha}{M_D} T_\alpha \ll T_\alpha$$

- Since $M_\alpha / M_D \approx 4 / (A-4)$, we obtain

$$T_\alpha \approx \frac{A-4}{4} Q \quad T_D \approx \frac{4}{A} Q$$
Nuclear Radiation: Alpha Decay

- **Most energetic \(\alpha \)-particles produced alone**
 - Parent nucleus decays to the ground state of a daughter and produces an \(\alpha \)-particle whose KE is the entire Q value

- **Less energetic ones accompany photons – mostly delayed...**
 - Indicates quantum energy levels
 - Parent decays to an excited state of the daughter after emitting an \(\alpha \)
 \[
 A^XZ \rightarrow A^{4-4}Y^{*Z-2} + \frac{4}{2}He^2
 \]
 - Daughter then subsequently de-excite by emitting a photon
 \[
 A^{4-4}Y^{*Z-2} \rightarrow A^{4-4}Y^{Z-2} + \gamma
 \]
 - Difference in the two Q values correspond to photon energy
Nuclear Radiation: α-Decay Example

- $^{240}\text{Pu}^{94}$ decay reaction is

 \[^{240}\text{Pu}^{94} \rightarrow ^{236}\text{U}^{92} + ^{4}\text{He}^{2} \]

- α particles observed with 5.17MeV and 5.12 MeV

- Since $Q = \frac{A}{A-4} T_\alpha$

- We obtain the two Q-values

 \[Q_1 \approx \frac{240}{236} 5.17\text{MeV} = 5.26\text{MeV} \quad Q_2 \approx \frac{240}{236} 5.12\text{MeV} = 5.21\text{MeV} \]

- Which yields photon energy of

 \[E_\gamma = \Delta Q = Q_1 - Q_2 = 0.05\text{MeV} \]

- Consistent with experimental measurement, 45KeV

- Indicates the energy level spacing of order 100KeV for nuclei

 - Compares to order 1eV spacing in atomic levels
Nuclear Radiation: β-Decays

- **Three kinds of β-decays**
 - **Electron emission**
 - Nucleus with large N_n
 - Proton number increases by one

 \[A^Z X^Z \rightarrow A^Z Y^{Z+1} + e^- \]

 - **Positron emission**
 - Nucleus with many protons
 - Proton number decreases by one

 \[A^Z X^Z \rightarrow A^Z Y^{Z-1} + e^+ \]

 - **Electron capture**
 - Nucleus with many protons
 - Absorbs a K-shell atomic electron
 - Proton number decreases by one
 - Causes cascade x-ray emission from the transition of remaining atomic electrons

 \[A^Z X^Z + e^- \rightarrow A^Z Y^{Z-1} \]

- **For β-decay**: $\Delta A=0$ and $|\Delta Z|=1$
Nuclear Radiation: β-Decays

• Initially assumed to be 2-body decay

• From the conservation of energy

$$E_X = E_Y + E_e^- = E_Y + T_e + m_e c^2$$

• Since the lighter electron carries most the energy

$$T_e = (E_X - E_Y - m_e c^2) = (m_X - m_Y - m_e) c^2 - T_Y = Q - T_Y \approx Q$$

• Will result in a unique values as in α-decay.

• In reality, electrons emitted with continuous E spectrum with an end-point given by the formula above

• Energy conservation is violated!!!!
Nuclear Radiation: β-Decays

- Angular momentum is also in trouble
- In β-decays total number of nucleons is conserved
- Electrons are fermions with spin $\hbar/2$
- Independent of any changes of an integer orbital angular momentum, the total angular momentum cannot be conserved
- Angular momentum conservation is violated!!!
Nuclear Radiation: β-Decays

- Pauli proposed an additional particle emitted in β-decays
 - No one saw this particle in experiment
 - Difficult to detect
 - Charge is conserved in b-decay
 - Electrically neutral
 - Maximum energy of electrons is the Q values
 - Massless
 - Must conserve the angular momentum
 - Must be a fermion with spin $\hbar/2$
- This particle is called neutrino (by Feynman) and expressed as ν
Nuclear Radiation: Neutrinos

• Have anti-neutrinos $\bar{\nu}$, just like other particles

• Neutrinos and anti-neutrinos are distinguished by magnetic moment
 – Helicity is used to distinguish them $H \propto \vec{p} \cdot \vec{s}$
 • Left-handed (spin and momentum opposite direction) anti-electron-neutrinos are produced in β-decays
 • Right-handed electron-neutrinos are produced in positron emission

 – e^- is a particle and e^+ is an anti-particle
 – ν_e is a particle and $\bar{\nu}_e$ is an anti-particle
Assignments

1. End of the chapter problems: 3.2
2. Derive the following equations:
 • Eq. 4.8 starting from conservation of energy
 • Eq. 4.11 both the formula
 • Due for these homework problems is next Wednesday, Feb. 23.