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PHYS 3446 – Lecture #12
Monday, Mar. 7, 2005

Dr. Jae Yu

• Particle Detection
• Ionization detectors
• MWPC
• Scintillators
• Time of Flight Technique
• Cerenkov detectors
• Calorimeters
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Announcements
• Second term exam

– Date and time: 1:00 – 2:30pm, Monday, Mar. 21
– Location: SH125
– Covers: CH4.5 – CH 8
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• Subatomic particles cannot be seen by naked eyes but can be 
detected through their interactions within matter

• What do you think we need to know first to construct a 
detector?
– What kind of particles do we want to detect?

• Charged particles and neutral particles
– What do we want to measure?

• Their momenta
• Trajectories
• Energies
• Origin of interaction (interaction vertex)
• Etc

– To what precision do we want to measure?
• Depending on the above questions we use different detection 

techniques 

Particle Detectors
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Particle Detection
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We know x,y starting momenta is zero, but
along the z axis it is not, so many of our 
measurements are in the xy plane, or transverse
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• Measures the ionization produced when an incident 
particles traverses through a medium

• Can be used to
– Trace charged particles through the medium
– Measure the energy (dE/dx) of the incident particle

• Must prevent re-combination of ion-electron into an atom after the 
ionization

• Apply high electric field across medium
– Separates charges and accelerates electrons

Ionization Detectors
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• Basic ionization detector consists 
– A chamber with an easily ionizable medium

• The medium must be chemically stable and should not absorb 
ionization electrons

• Should have low ionization potential (⎯I ) To maximize the 
amount of ionization produced per given energy

– A cathode and an anode held at some large potential 
difference

– The device is characterized by a capacitance determined by 
its geometry

Ionization Detectors – Chamber Structure
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• The ionization electrons and ions drift to their corresponding 
electrodes, to anode and cathode
– Provide small currents that flow through the resistor
– The current causes voltage drop that can be sensed by the amplifier
– Amplifier signal can be analyzed to obtain pulse height that is related to 

the total amount of ionization

Ionization Detectors – Chamber Structure

Negative

Positive
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• Depending on the magnitude of the electric field across the medium different behaviors 
are expected

– Recombination region: Low electric field
– Ionization region: Medium voltage that prevents recombination
– Proportional region: large enough HV to cause acceleration of ionization electrons and 

additional ionization of atoms
– Geiger-operating region: Sufficiently high voltage that can cause large avalanche if electron 

and ion pair production that leads to a discharge
– Discharge region: HV beyond Geiger operating region, no longer usable

Ionization Detectors – HV
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• Operate at relatively low voltage
• Generate no amplification of the original signal
• Output pulses for minimum ionizing particle is small
• Insensitive to voltage variation
• Have short recovery time Used in high interaction rate 

environment
• Response linear to input signal 
• Excellent energy resolution
• Liquid argon ionization chambers used for sampling 

calorimeters
• Gaseous ionization chambers are useful for monitoring high 

level of radiation, such as alpha decay

Ionization Counters
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• Gaseous proportional counters operate in high 
electric fields ~104 V/cm.

• Typical amplification of factors of ~105

• Use thin wires ( 10 – 50 µm diameter) as anode 
electrodes in a cylindrical chamber geometry

• Multiplication occur near the anode wire where the 
field is strongest causing secondary ionization

• Sensitive to the voltage variation not suitable for 
energy measurement

• But used for tracking device 

Proportional Counters
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• G. Charpak et al developed a proportional counter in a 
multiwire proportional chamber
– One of the primary position detectors in HEP

• A plane of anode wires positioned precisely w/ about 2 mm 
spacing

• Can be sandwiched in similar cathode planes (in <1cm 
distance to the anodes) using wires or sheet of aluminum

Multi-Wire Proportional Chambers (MWPC)

Cathode 
planes
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• These structures can be enclosed to form one plane 
of the detector

• Multiple layers can be placed in a succession to 
provide three dimensional position information

Multi-Wire Proportional Chambers (MWPC)
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• A set of MWPC planes placed before and after a magnetic 
field can be used to obtain the deflection angle which in turn 
provide momentum of the particle

• Multiple relatively constant electric field can be placed in 
each cell in a direction transverse to normal incident Drift 
chambers

• Typical position resolution of proportional chambers are on 
the order of 200 µm.

Momentum Measurements
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A Schematics of a Drift Chamber

Primary Ionization created
Electrons and ions drift apart

Secondary avalanche occurs
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• Ionization detector that operates in the Geiger range of voltages
• For example, an electron with 0.5MeV KE that looses all its energy in the 

counter
• Assume that the gaseous medium is helium with an ionization energy of 

42eV. 
• Number of ionization electron-ion pair in the gas is

• If the detector operates as an ionization chamber and has a capacitance of 
1 nF, the resulting voltage signal is 

• In Geiger range, the expected number of electron-ion pair is of the order 
1010 independent of the incoming energy, giving about 1.6V pulse height

Geiger-Muller Counters
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• Simple construction
• Insensivity to voltage fluctuation
• Used in detecting radiation
• Disadvantages

– Insensitive to the types of radiation
–Due to large avalanche, takes long time 

(~1ms) to recover
• Cannot be used in high rate environment

(Dis) Advantage of Geiger-Muller Counters
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• Ionization produced by charged particles can 
excite atoms and molecules in the medium to 
higher energy levels

• The subsequent de-excitation process produces 
lights that can be detected  and provide 
evidence for the traversal of the charged 
particles

• Scintillators are the materials that can produce 
lights in visible part of the spectrum

Scintillation Counters
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• Two types of scintillators
– Organic or plastic

• Tend to emit ultra-violate
• Wavelength shifters are needed to reduce attenuation
• Faster decay time (10-8s)
• More appropriate for high flux environment

– Inorganic or crystalline (NaI or CsI)
• Doped with activators that can be excited by electron-hole 

pairs produced by charged particles in the crystal lattice
• These dopants can then be deexcited through photon 

emission
• Decay time of order 10-6sec
• Used in low energy detection

Scintillation Counters



Monday, Mar. 7, 2005 PHYS 3446, Spring 2005
Jae Yu

19

• The light produced by scintillators are usually too 
weak to see
– Photon signal needs amplification through 

photomultiplier tubes
• Gets the light from scintillator directly or through light guide

– Photocathode: Made of material in which valence electrons are 
loosely bound and are easy to cause photo-electric effect (2 – 12 
cm diameter)

– Series of multiple dynodes that are made of material with 
relatively low work-function

» Operating at an increasing potential difference (100 – 200 V 
difference between dynodes

Scintillation Counters – Photo-multiplier Tube
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• The dynodes accelerate the electrons to the next stage, amplifying the 
signal to a factor of 104 – 107

• Quantum conversion efficiency of photocathode is typically on the order of 
0.25

• Output signal is proportional to the amount of the incident light except for 
the statistical fluctuation

• Takes only a few nano-seconds for signal processing
• Used in as trigger or in an environment that requires fast response
• Scintillator+PMT good detector for charged particles or photons or neutrons

Scintillation Counters – Photo-multiplier Tube
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Some PMT’s

Super-Kamiokande detector
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• Scintillator + PMT can provide time resolution of 0.1 ns.  
– What position resolution does this corresponds to?

• 3cm
• Array of scintillation counters can be used to measure 

the time of flight (TOF) of particles and obtain their 
velocities
– What can this be used for?

• Can use this to distinguish particles with about the same momentum 
but with different mass

– How?
• Measure

– the momentum (p) of a particle in a magnetic field
– its time of flight (t) for reaching some scintillation counter at a distance L from 

the point of origin of particle
– Determine the velocity of the particle and its mass

Time of Flight
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• TOF is the distance traveled divided by the speed of the 
particle, t=L/v.

• Thus ∆t in flight time of the two particle with m1 and m2
is

• For known momentum, p,

• In non-relativistic limit,

• Mass resolution of ~1% is achievable for low energies

Time of Flight
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Assignments
1. Derive Eq. 7.10
2. Carry out computations for Eq. 7.14 and 7.17
3. Due for these assignments is Wednesday, Mar. 

23.


