## PHYS 3446 – Lecture #13

Wednesday, Mar. 9, 2005 Dr. Jae Yu

- Particle Detection
  - Cerenkov detectors
  - Calorimeters
- Accelerators
  - Electrostatic Accelerators
  - Resonance Accelerators
  - Synchronous Accelerators (synchrotrons)
  - Colliding Beams



## Announcements

- Second term exam
  - Date and time: 1:00 2:30pm, Monday, Mar. 21
  - Location: SH125
  - Covers: CH4.5 CH 8



- What is the Cerenkov radiation?
  - Emission of coherent radiation from the excitation of atoms and molecules
- When does this occur?
  - If a charged particle enters a dielectric medium with a speed faster than light in the medium
  - How is this possible?
    - Since the speed of light is c/n in a medium with index of refraction n, if the speed of the particle is  $\beta$ >1/n, its speed is larger than the speed of light
- Cerenkov light has various frequencies but blue and ultraviolet band are most interesting
  - Blue can be directly detected w/ standard PMTs
  - Ultraviolet can be converted to electrons using photosensitive molecules mixed in with some gas in an ionization chamber



- The angle of emission is given by  $\cos \theta_c = \frac{1}{\beta n}$
- The intensity of the produced radiation per unit length of radiator is proportional to  $\sin^2\theta_c$ .
- For  $\beta n > 1$ , light can be emitted while for  $\beta n < 1$ , no light can be observed.
- Thus, Cerenkov effect provides a means for distinguishing particles with the same momentum
  - One can use multiple chambers of various indices of refraction to detect Cerenkov radiation from different mass particles of the same momentum



- Threshold counters
  - Particles with the same momentum but with different mass will start emitting Cerenkov light when the index of refraction is above a certain threshold
  - These counters have one type of gas but could vary the pressure in the chamber to change the index of refraction to distinguish particles
  - Large proton decay experiments use Cerenkov detector to detect the final state particles, such as p  $\rightarrow$  e<sup>+</sup> $\pi^0$
- Differential counters
  - Measure the angle of emission for the given index of refraction since the emission angle for lighter particles will be larger than heavier ones



### Super Kamiokande A Differential Water Cerenkov Detector

- •Kamioka zinc mine, Japan
- 1000m underground
- •40 m (d) x 40m(h) SS
- •50,000 tons of ultra pure  $H_2O$
- •11200(inner)+1800(outer) 50cm PMT's
- •Originally for proton decay experiment
- •Accident in Nov. 2001, destroyed 7000 PMT's
- •Dec. 2002 resumed data taking



UPERKAMIOKANDE FISTITUTE FOR CORING RAY RESEARCH UNIVERSITY OF TOXY

Wednesday, Mar. 9, 2005



PHYS 3446, Spring 2005 Jae Yu

### Super-K Event Displays



Wednesday, Mar. 9, 2005



PHYS 3446, Spring 2005 Jae Yu

- Ring-imaging Cerenkov Counters (RICH)
  - Use UV emissions
  - An energetic charged particle can produce multiple UV distributed about the direction of the particle
  - These UV photons can then be put through a photo-sensitive medium creating a ring of electrons
  - These electrons then can be detected in an ionization chamber forming a ring
  - Babar experiment at SLAC uses this detector



## Semiconductor Detectors

- Semiconductors can produce large signal (electron-hole pairs) with relative small energy deposit (~3eV)
  - Advantageous in measuring low energy at high resolution
- Silicon strip and pixel detectors are widely used for high precision position measurements
  - Due to large electron-hole pair production, thin layers (200 300  $\mu\text{m}$ ) of wafers sufficient for measurements
  - Output signal proportional to the ionization loss
  - Low bias voltages sufficient to operate
  - Can be deposit in thin stripes (20 50  $\mu$ m) on thin electrode
  - High position resolution achievable
  - Can be used to distinguish particles in multiple detector configurations
- So what is the catch?
  - Very expensive  $\rightarrow$  On the order of \$30k/m<sup>2</sup>



### DØ Silicon Vertex Detector



|          | Barrels | F-Disks | H-Disks |
|----------|---------|---------|---------|
| Channels | 387120  | 258048  | 147456  |
| Modules  | 432     | 144     | 96      |
| Inner R  | 2.7 cm  | 2.6 cm  | 9.5 cm  |
| Outer R  | 9.4 cm  | 10.5 cm | 26 cm   |

PHYS 3446, Spring 2005 Jae Yu Disk

## Calorimeters

- Magnetic measurement of momentum is not sufficient, why?
  - The precision for angular measurements gets worse as particles' momenta increases
  - Increasing magnetic field or increasing precision of the tracking device will help but will be expensive
  - Cannot measure neutral particle momenta
- How do we solve this problem?
  - Use a device that measures kinetic energies of particles
- Calorimeter
  - A device that absorbs full kinetic energy of a particle
  - Provides signal proportional to deposited energy



## Calorimeters

- Large scale calorimeter were developed during 1960s
  - For energetic cosmic rays
  - For particles produced in accelerator experiments
- How do EM (photons and electrons) and Hadronic particles deposit their energies?
  - Electrons: via bremsstrahlung
  - Photons: via electron-positron conversion, followed by bremsstrahlung of electrons and positrons
  - These processes continue occurring in the secondary particles causing an electromagnetic shower losing all of its energy



### **Electron Shower Process**





## Calorimeters

- Hadrons are massive thus their energy deposit via brem is small
- They lose their energies through multiple nuclear collisions
- Incident hadron produces multiple pions and other secondary hadrons in the first collision
- The secondary hadrons then successively undergo nuclear collisions
- Mean free path for nuclear collisions is called nuclear interaction lengths and is substantially larger than that of EM particles
- Hadronic shower processes are therefore more erratic than EM shower processes



# Sampling Calorimeters

- High energy particles require large calorimeters to absorb all of their energies and measure them fully in the device (called total absorption calorimeters)
- Since the number of shower particles is proportional to the energy of the incident particles
- One can deduce the total energy of the particle by measuring only the fraction of their energy, as long as the fraction is known → Called sampling calorimeters
  - Most the high energy experiments use sampling calorimeters





Readout Board to Separate Amplifier

#### How particle showers look in detectors



Wednesday, Mar. 9, 2005



PHYS 3446, Spring 2005 Jae Yu

### Particle Accelerators

- How can one obtain high energy particles? •
  - Cosmic ray  $\rightarrow$  Sometimes we observe 1000TeV cosmic rays
    - Low flux and cannot control energies too well
- Need to look into small distances to probe the fundamental • constituents with full control of particle energies and fluxes
  - Particle accelerators
- Accelerators need not only to accelerate particles but also to •
  - Track them
  - Maneuver them
  - Constrain their motions on the order of  $1\mu m$
- Why? •
  - Must correct particle paths and momenta to increase fluxes and control momenta Wednesday, Mar. 9, 2005



### Particle Accelerators

- Depending on what the main goals of physics is, one can have various kinds of accelerators
- Fixed target experiments: Probe the nature of the nucleons → Structure functions
  - Results also can be used for producing secondary particles for further accelerations
- Colliders: Probes the interactions between fundamental constituents
  - Hadron colliders: Wide kinematic ranges and high discovery potential
    - Proton-anti-proton: TeVatron at Fermilab, Sp  $\overline{p}S$  at CERN
    - Proton-Proton: Large Hadron Collider at CERN (to turn on 2007)
  - Lepton colliders: Very narrow kinematic reach and for precision measurements
    - Electron-positron: LEP at CERN, Petra at DESY, PEP at SLAC, Tristan at KEK, ILC in the med-range future
    - Muon-anti-muon: Conceptual accelerator in the far future
  - Lepton-hadron colliders: HERA at DESY

Wednesday, Mar. 9, 2005



## Electrostatic Accelerators: Cockcroft-Walton

- Ckckcroft-Walton Machines
  - Pass ions through sets of aligned DC electrodes at successively increasing fixed potentials
  - Consists of ion source (hydrogen gas) and a target with the electrodes arranged in between
  - Acceleration Procedure
    - Electrons are either added or striped off of an atom
    - Ions of charge q then get accelerated through series of electrodes, gaining kinetic energy of T=qV through every set of electrodes
- Limited to about 1MeV acceleration due to voltage breakdown and discharge beyond voltage of 1MV.
- Available commercially and also used as the first step high current injector (to ~1mA).

Wednesday, Mar. 9, 2005



PHYS 3446, Spring 2005 Jae Yu



### Electrostatic Accelerators: Van de Graaff

- Energies of particles through DC accelerators are proportional to the applied voltage
- Robert Van de Graaff developed a clever mechanism to increase HV
  - The charge on any conductor resides on its outermost surface
  - If a conductor carrying additional charge touches another conductor that surrounds it, all of its charges will transfer to the outer conductor increasing the charge on the outer conductor, increasing HV



### Electrostatic Accelerators: Van de Graaff

- Sprayer adds positive charge to the conveyor belt at corona points
- Charge is carried on an insulating conveyor belt
- The charges get transferred to the dome via the collector
- The ions in the source then gets accelerated to about 12MeV
- Tandem Van de Graff can accelerate particles up to 25 MeV
- This acceleration normally occurs in high pressure gas that has very high breakdown voltage





## Resonance Accelerators: Cyclotron

- Fixed voltage machines have intrinsic limitations in their energy due to breakdown
- Machines using resonance principles can accelerate particles in higher energies
- Cyclotron developed by E. Lawrence is the simplest one
- Accelerator consists of
  - Two hallow D shaped metal chambers connected to alternating HV source
  - The entire system is placed under strong magnetic field





### Resonance Accelerators: Cyclotron

- While the Ds are connected HV sources, there is no electric field inside the chamber due to Faraday effect
- Strong electric field exists only the gap between the Ds
- A ion source placed in the gap
- The path is circular due to the magnetic field
- Ion does not feel any acceleration in a D but bent due to magnetic field
- When the particle exits a D, the direction of voltage can be changed and the ion gets accelerated before entering into the D on the other side
- If the frequency of the alternating voltage is just right, the charged particle gets accelerated continuously until it is extracted





### Resonance Accelerators: Cyclotron

• For non-relativistic motion, the frequency appropriate for alternating voltage can be calculated from the fact that the magnetic force provides centripetal acceleration for a circular orbit  $v^2 + vB = -v + qB$ 

• In a constant speed,  $\omega = v/r$ . The frequency of the motion is

$$v = \frac{\varpi}{2\pi} = \frac{qB}{2\pi mc} = \frac{1}{2\pi} \left(\frac{q}{m}\right) \frac{B}{c}$$

- Thus, to continue accelerate the particle the electric field should alternate in this frequency, cyclotron resonance frequency
- The maximum kinetic energy achievable for an cyclotron with radius R is  $1 2 1 2 2 (qBR)^2$

$$T_{\max} = \frac{1}{2}mv_{\max}^2 = \frac{1}{2}m\sigma^2 R^2 = \frac{(qBR)}{mc^2}$$



### Resonance Accelerators: Linear Accelerator

- Accelerates particles along a linear path using resonance principle ٠
- A series of metal tubes are located in a vacuum vessel and connected • successively to alternating terminals of radio frequency oscillator
- The directions of the electric fields changes before the particles exits the • given tube
- The tube length needs to get longer as the particle gets accelerated to • keep up with the phase
- These accelerators are used for accelerating light particles to very high • energies

Jae Yu







## Synchroton Accelerators

- For very energetic particles, the relativistic effect must be taken into account
- For relativistic energies, the equation of motion of a charge q under magnetic field B is  $m\gamma \frac{d\vec{v}}{dt} = m\gamma \vec{v} \times \vec{\varpi} = q \frac{\vec{v} \times \vec{B}}{c}$
- For v ~ c, the resonance frequency becomes

$$v = \frac{\varpi}{2\pi} = \frac{1}{2\pi} \left(\frac{q}{m}\right) \frac{1}{\gamma} \frac{B}{c}$$

- Thus for high energies, either B or v should increase
- Machines with B is constant but  $\boldsymbol{\nu}$  varies are called synchrocyclotrons
- Machines there B changes independent of the change of  $\mathbf{v}$  is called synchrotrons



## Synchroton Accelerators

- Electron synchrotrons, B varies while  $\boldsymbol{\nu}$  is held constant
- Proton synchrotrons, both B and  $\nu$  varies
- For v ~ c, the frequency of motion can be expressed

$$\nu = \frac{1}{2\pi} \frac{v}{R} \approx \frac{c}{2\pi R}$$

• For an electron

$$R(m) = \frac{pc}{qB} \approx \frac{p(GeV/c)}{0.3B(Tesla))}$$

• For magnetic field strength of 2Tesla, one needs radius of 50m to accelerate an electron to 30GeV/c.



### Synchroton Accelerators

- Synchrotons use magnets arranged in a ring-like fashion.
- Multiple stages of accelerations are needed before reaching over GeV ranges of energies
- RF power stations are located through the ring to pump electric energies into the particles





# Assignments

- 1. What are the threshold indices of refraction for protons, kaons and pions of momentum p to emit Cerenkov radiation? What are the actual values of indices of refraction for p = 1 and 10 GeV/c?
- 2. Compute the radius of an electron-positron synchrotron with 2T magnetic field to accelerate them to 100GeV/c.
- Due for these assignments is Wednesday, Mar.
  23.

