PHYS 3446 – Lecture #14

Wednesday, Mar. 23, 2005 Dr. Jae Yu

- Elementary Particle Properties
 - Forces and their relative magnitudes
 - Elementary particles
 - Quantum Numbers
 - Gell-Mann-Nishijima Relations
 - Production and Decay of Resonances

Announcements

- Class Projects
 - Report papers are due on Friday, Apr. 22
 - The format of the paper will be posted on the class web page
 - Presentations will be on
 - Monday, Apr. 25: Z's (10+5 each)
 - Wednesday, Apr. 27: W's (10+5 each)
 - Papers constitute 20% while the presentations are 10%
- Project assignments
- Class assignments:
 - $W \rightarrow ev+X$: James, Carlos and Elisha
 - $W \rightarrow \mu \nu + X$: Jeremy and Jim
 - $Z \rightarrow ee+X$: Casey, David and Mathew
 - $Z \rightarrow \mu \mu + X$: John, Jacob and Sabine
- I am sure you guys have been analyzing but since there isn't too much time before the due, I'd suggest you to move rapidly on this.

Paper Template

🖄 project-paper-format - GSview		
File Edit Options View Orientation Media Help		
UTA-HEP/D0-####		
Kinematic Properties of (your propert $Z \to z^+z^-$) Events at $\sqrt{z} = 2\text{TeV}$		
Kinematic Properties of (your process, $2 \rightarrow e^{2}$) Events at $\sqrt{3} = 21e^{2}$		
Using the DØ Detector at Ferninab		
Date		
Date		
Author Name		
University of Texas at Arlington		
Abstract		
I present the results of the measurements of kinematic properties of blah blah events.		
Electron (Muon, or Neutrino) transverse momentum, pseudo-rapidity and azimuthal		
angle distributions are presented. The transverse momentum distribution shows the		
characteristic behavior of \mathcal{L} decay products, which peaks at half the mass and has I		
invariant mass distribution nears at 915 ± 120 GeV which is consistent with other		
measurements and the Standard Model predictions.		
I. Introduction (0.5 – 1 page)		
 Say something about SM and what you are measuring 		
II. Apparatus (1-3 pages including pictures)		
1. The levatron Collider at Fermilab		
2. The DØ Detector		
11. Data Sample (-1 page)		
IV. Event Selection (1-2 pages)		
1. List the cuts you used to select candidates and their justifications.		
V. Backgrounds (-1 page)		
1. List possible background sources for your process and how they could be		
background to your analysis.		
V1. Results (2-5 pages including pictures)		
1. Show plots of kinematic properties [ret#1] and some explanations [ret#2]. All		
plots, pictures and tables much have captions. Captions for plots of picture go		
ordered in sequence they appear		
2. This should include comparisons to Monte Carlo samples.		
VII. Conclusions (0.5–1 page)		
1. List your conclusions here.		
VIII. Bibliography (as many as you need)		
 Should be numbered instead of letters. 		
Bibliography items must be ordered in the sequence they appear.		

Forewords

- What are elementary particles?
 - Particles that make up matter in the universe
- What is the requirement for a particle to be an elementary one?
 - Cannot be broken into smaller pieces
 - Cannot have sizes
- The notion of "elementary particles" have changed from 1930's through
 present
 - In the past, people thought protons, neutrons, pions, kaons, $\rho\text{-mesons},$ etc, as elementary particles
- Why?
 - Due to the increasing energies of accelerators that allows us to probe smaller distance scales
- What is the energy needed to probe 0.1–fm?
 - From de Broglie Wavelength, we obtain

$$P = \frac{\hbar}{\lambda} = \frac{\hbar c}{\lambda c} = \frac{197 \text{fm} - MeV}{0.1 \text{fm} c} \approx 2000 MeV/c$$

Forces and Their Relative Strengths

- Classical forces:
 - Gravitational: every particle is subject to this force, including massless ones
 - How do you know?
 - Electromagnetic: only those with electrical charges
 - What are the ranges of these forces?
 - Infinite!!
 - What does this tell you?
 - Their force carriers are massless!!
 - What are the force carriers of these forces?
 - Gravity: graviton (not seen but just a concept)
 - Electromagnetism: Photons

Forces and Their Relative Strengths

- What other forces?
 - Strong force
 - Where did we learn this force?
 - From nuclear phenomena
 - The interactions are far stronger and extremely short ranged
 - Weak force
 - How did we learn about this force?
 - From nuclear beta decay
 - What are their ranges?
 - Very short
 - What does this tell you?
 - Their force carriers are massive!
 - Not really for strong forces
- All four forces can act at the same time!!!

- The strengths can be obtained through potential, considering two protons separated by a distance r.
- Magnitude of Coulomb and gravitational potential are

$$V_{EM}(r) = \frac{e^2}{r}$$
 Fourier x-form $V_{EM}(r) = \frac{e^2}{q^2}$

$$V_g(r) = \frac{G_N m^2}{r}$$
 Fourier x-form $V_g(r) = \frac{G_N m^2}{q^2}$

- q: magnitude of the momentum transfer

- What do you observe?
 - The absolute values of the potential E decreases quadratically with increasing momentum transfer
 - The relative strength is, though independent of momentum transfer

$$\frac{V_{EM}}{V_g} = \frac{e^2}{G_N m^2} = \left(\frac{e^2}{\hbar c}\right) \frac{1}{\left(mc^2\right)^2} \frac{\hbar c^5}{G_N} = \left(\frac{1}{137}\right) \frac{1}{1GeV^2} \frac{10^{39} GeV^2}{6.7} \sim 10^{36}$$

 Using Yukawa potential form, the magnitudes of strong and weak potentail can be written as

$$V_{S}(r) = \frac{g_{S}^{2}}{r} e^{-\frac{m_{\pi}c^{2}r}{\hbar c}} \quad \text{Fourier x-form} \quad V_{S}(r) = \frac{g_{S}^{2}}{q^{2} + m_{\pi}^{2}c^{2}}$$
$$V_{W}(r) = \frac{g_{W}^{2}}{r} e^{-\frac{m_{W}c^{2}r}{\hbar c}} \quad \text{Fourier x-form} \quad V_{W}(r) = \frac{g_{W}^{2}}{q^{2} + m_{W}^{2}c^{2}}$$

- g_W and g_s : coupling constants or effective charges
- m_W and m_{π} : masses of force mediators
- The values of the coupling constants can be estimated from experiments g_{s}^{2} g_{w}^{2}

- We could think of π as the strong force mediator w/ $m_{\pi} \approx 140 MeV/c^2$
- From observations of beta decays, $m_W \approx 80 GeV/c^2$
- However there still is an explicit dependence on momentum transfer
 - Since we are considering two protons, we can replace the momentum transfer, q, with the mass of protons

 $q^2c^2 = m_p^2c^4 \approx 1GeV$

The relative strength between EM and strong potential
 is

$$\frac{V_S}{V_{EM}} = \frac{g_S^2}{\hbar c} \frac{\hbar c}{e^2} \frac{q^2}{q^2 + m_\pi^2 c^2} = \frac{g_S^2}{\hbar c} \frac{\hbar c}{e^2} \frac{m_p^2 c^4}{m_p^2 c^4 + m_\pi^2 c^2}$$

\$\approx 15 \times 137 \times 1 \approx 2 \times 10^3\$

• And that between weak and EM is

$$\frac{V_{EM}}{V_W} = \frac{e^2}{\hbar c} \frac{\hbar c}{g_W^2} \frac{q^2 + m_W^2 c^2}{q^2} = \frac{e^2}{\hbar c} \frac{\hbar c}{g_W^2} \frac{m_p^2 c^4 + m_W^2 c^2}{m_p^2 c^4}$$
$$\approx \frac{1}{137} \times \frac{1}{0.004} \times 80^2 \approx 1.2 \times 10^4$$

Wednesday, Mar. 23, 2005

Interaction Time

- The ranges of forces also affect interaction time
 - Typical time for Strong interaction ~10⁻²⁴sec
 - What is this?
 - A time that takes light to traverse the size of a proton (~1 fm)
 - Typical time for EM force $\sim 10^{-20} 10^{-16}$ sec
 - Typical time for Weak force $\sim 10^{-13} 10^{-6}$ sec
- In GeV ranges, the four forces are different
- These are used to classify elementary particles

Elementary Particles

• Before the quark concepts, all known elementary particles were grouped in four depending on the nature of their interactions

Particle	Symbol	Range of Mass Values
Photon	γ	$\lesssim 2 \times 10^{-16} \ {\rm eV}/c^2$
Leptons	$e^-,\mu^-, au^-, u_e, u_\mu, u_ au$	$\lesssim 3~{ m eV}/c^2 - 1.777~{ m GeV}/c^2$
Mesons	$\pi^+, \pi^-, \pi^0, K^+, K^-, K^0,$	
	$ ho^+, ho^-, ho^0, \dots$	$135 \text{ MeV}/c^2 - \text{ few GeV}/c^2$
Baryons	$p, n, \Lambda^0, \Sigma^+, \Sigma^-, \Sigma^0, \Delta^{++},$	
	$\Delta^0, N^{*0}, Y_1^{*+}, \Omega^-, \dots$	938 MeV/ c^2 – few GeV/ c^2

Elementary Particles

- How do these particles interact??
 - All particles, including photons and neutrinos, participate in gravitational interactions
 - Photons can interact electromagnetically with any particles with electric charge
 - All charged leptons participate in both EM and weak interactions
 - Neutral leptons do not have EM couplings
 - All hadrons (Mesons and baryons) responds to the strong force and appears to participate in all the interactions

Elementary Particles: Bosons and Fermions

- All particles can be classified as bosons or fermions
 - Bosons follow Bose-Einstein statistics
 - Quantum mechanical wave function is symmetric under exchange of any pair of bosons
 - $\Psi_B(x_1, x_2, x_3, \dots, x_i, \dots, x_n) = \Psi_B(x_2, x_1, x_3, \dots, x_i, \dots, x_n)$
 - x_i: space-time coordinates and internal quantum numbers of particle i
 - Fermions obey Fermi-Dirac statistics
 - Quantum mechanical wave function is anti-symmetric under exchange of any pair of Fermions

$$\Psi_{F}(x_{1}, x_{2}, x_{3}, \dots, x_{i}, \dots, x_{n}) = -\Psi_{F}(x_{2}, x_{1}, x_{3}, \dots, x_{i}, \dots, x_{n})$$

Pauli exclusion principle is built into the wave function

 $\Psi_F = -\Psi_F$

For xi=xj,

Wednesday, Mar. 23, 2005

Bosons, Fermions, Particles and Antiparticles

- Bosons
 - All have integer spin angular momentum
 - All mesons are bosons
- Fermions
 - All have half integer spin angular momentum
 - All leptons and baryons are fermions
- All particles have anti-particles
 - What are anti-particles?
 - Particles that has same mass as particles but with opposite quantum numbers
 - What is the anti-particle of
 - A π⁰?
 - A neutron?
 - A K⁰?
 - A Neutrinos?

Wednesday, Mar. 23, 2005

Quantum Numbers

- When can an interaction occur?
 - If it is kinematically allowed
 - If it does not violate any recognized conservation laws
 - Eg. A reaction that violates charge conservation will not occur
 - In order to deduce conservation laws, a full theoretical understanding of forces are necessary
- Since we do not have full theory for all the forces
 - Many of general conservation rules for particles are based on experiments
- One of the clearest conservation is the lepton number conservation
 - While photon and meson numbers are not conserved

Baryon Numbers

- Can the decay $p \rightarrow e^+ + \pi^0$ occur?
 - Kinematically??
 - Yes, proton mass is a lot larger than the sum of the two masses
 - Electrical charge?
 - Yes, it is conserved
- But this decay does not occur (<10⁻⁴⁰/sec)
 - Why?
 - Must be a conservation law that prohibits this decay
 - What could it be?
 - An additive and conserved quantum number, Baryon number (B)
 - All baryons have B=1
 - Anti-baryons? (B=-1)
 - Photons, leptons and mesons have B=0
- Since proton is the lightest baryon, it does not decay.

Assignments

- 1. Carry out Fourier transformation and derive equations 9.3 and 9.5
- 2. Due is next Wednesday, Mar. 30

