PHYS 3446 – Lecture #15

Monday, Mar. 28, 2005 Dr. **Jae** Yu

- Elementary Particle Properties
 - Lepton numbers
 - Strangeness
 - Isospin
 - Gell-Mann-Nishijima Relations
 - Violation of quantum numbers

Announcements

- 2nd term exam results
 - Class average: 41.1
 - What was previous average?
 - 64.8
 - Top score: 80
- Grade proportions
 - Term exams: 15% each
 - Lab: 15%
 - Homework: 15%
 - Pop quizzes: 10%
 - There will be one or two more quizzes
 - Final paper: 20%
 - Presentation: 10%
 - Extra credit: 10%

• Will have an individual mid-semester discussion next week

Lepton Numbers

- Quantum number of leptons
 - All leptons carry L=1 (particles) or L=-1 (antiparticles)
 - Photons or hadrons carry L=0
- Lepton number is a conserved quantity
 - Total lepton number must be conserved
 - Lepton numbers by species must be conserved
 - This is an empirical law necessitated by experimental observation (or lack thereof)
- Consider the decay $e^+ + e^- \rightarrow \pi^+ + \pi^-$
 - Does this decay process conserve energy and charge?
 - Yes
 - But it hasn't been observed, why?
 - Due to the lepton number conservation

Lepton Number Assignments

Leptons (anti-leptons)	L _e	L _μ	L _τ	$L=L_e+L_{\mu}+L_{\tau}$
e- (e+)	1 (-1)	0	0	1 (-1)
$v_e \ \left(\overline{v}_e\right)$	1 (-1)	0	0	1 (-1)
$\mu^{-}\left(\mu^{+}\right)$	0	1 (-1)	0	1 (-1)
$\nu_{\mu} \left(\overline{\nu}_{\mu} \right)$	0	1 (-1)	0	1 (-1)
$ au^-\left(au^+ ight)$	0	0	1 (-1)	1 (-1)
$ \nu_{\tau} \left(\overline{\nu}_{\tau} \right) $	0	0	1 (-1)	1 (-1)

Lepton Number Conservation

• Can the following decays occur?

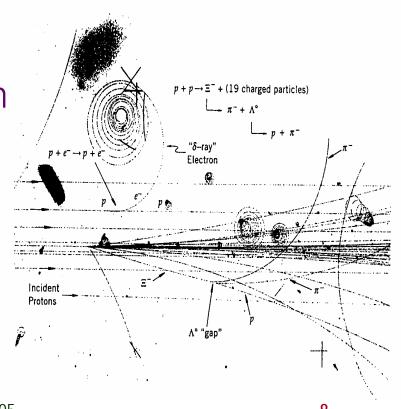
Decays	$\mu^- \to e^- + \gamma$	$\mu^- \rightarrow e^- + e^+ + e^-$	$\mu^- \to e^- + \overline{\nu}_e + \nu_\mu$
L _e	$0 \rightarrow 1 + 0$	$0 \rightarrow 1 - 1 + 1$	$0 \rightarrow 1 - 1 + 0$
L _μ	$1 \rightarrow 0 + 0$	$1 \rightarrow 0 + 0 + 0$	$1 \rightarrow 0 + 0 + 1$
L _τ	$0 \rightarrow 0 + 0$	$0 \rightarrow 0 + 0 + 0$	$0 \rightarrow 0 + 0 + 0$
$L=L_e+L_{\mu}+L_{\tau}$	$1 \rightarrow 1 + 0$	$1 \rightarrow 1 - 1 + 1$	$1 \rightarrow 1 - 1 + 1$

- Case 1: L is conserved but $L_{\rm e}$ and L_{μ} not conserved
- Case 2: L is conserved but L_{e} and L_{μ} not conserved
- Case 3: L is conserved, and $L_{\rm e}$ and L_{μ} are also conserved

- From cosmic ray observations
 - K-mesons and Σ and Λ^0 baryons are produced strongly
 - But their lifetime typical of weak interactions (~10⁻¹⁰ sec)
 - Are produced in pairs
 - Gave an indication of a new quantum number
- Consider the reaction $\pi^- + p \rightarrow K^0 + \Lambda^0$
 - K^0 and Λ^0 subsequently decay
 - $\Lambda^0 \rightarrow \pi^- + p$ and $K^0 \rightarrow \pi^+ + \pi^-$
- Observations
 - Λ^0 was always produced w/ K⁰ never w/ just a π^0
 - Λ^0 was produced w/ K+ but not w/ K-

$$\pi^- + p \longrightarrow K^+ + \pi^- + \Lambda^0$$

$$\pi^- + p \not\prec K^- + \pi^+ + \Lambda^0 \qquad \pi^- + p \not\prec \pi^- + \pi^+ + \Lambda^0$$


- Consider the reaction $\pi^+ + p \rightarrow \Sigma^+ + K^+$ and $\pi^- + p \rightarrow \Sigma^- + K^+$ – With the decay $\Sigma^{+(-)} \rightarrow n + \pi^{+(-)}$ and $K^+ \rightarrow \pi^+ + \pi^0$
- Observations from Σ^+
 - Σ^+ is always produced w/ a K⁺ never w/ just a π^+
 - $\Sigma^{\scriptscriptstyle +}$ is also produced w/ a K^0 but w/ an additional $\pi^{\scriptscriptstyle +}$ for charge conservation
- Observations from Σ^-
 - Σ^- is always produced w/ a K⁺ never w/ K⁻
- Thus,
 - Observed: $\pi^+ + p \rightarrow \Sigma^+ + \pi^+ + K^0 \quad \pi^- + p \rightarrow \Sigma^- + K^+$
 - Not observed: $\pi^- + p \not\rightarrow \Sigma^+ + K^ \pi^- + p \not\rightarrow \Sigma^- + \pi^+$

- Further observation of cross section measurements
 - Cross sections for the allow reactions w/ 1GeV/c pion momenta are ~ 1mb
 - Total pion cross section is ~ 30mb
 - The interactions are strong
 - Λ^0 at v~0.1c decays in about 0.3cm
 - Lifetime of Λ^0 baryon is

$$\tau_{\Lambda^0} \approx \frac{0.3cm}{3 \times 10^9 \, cm/s} = 10^{-10} \, \text{sec}$$

 These short lifetime of these strange particles indicate weak decay

- Strangeness quantum number
 - Murray Gell-Mann and Abraham Pais proposed a new additive quantum number that are carried by these particles
 - Conserved in strong interactions
 - Violated in weak decays
 - All ordinary mesons and baryons as well as photons and leptons have strangeness 0 (S=0)
 - For any strong associated-production reaction w/ the initial state S=0, the total strangeness of particles in the final state should add up to 0.
- Based on experimental observations of reactions and w/ an arbitrary choice of S(K⁰)=1, we obtain
 - $S(K^+)=S(K^0)=1$ and $\Sigma(K^-)=\Sigma(\overline{K}^0)=-1$
 - $S(\Lambda^0) = S(\Sigma^+) = S(\Sigma^0) = S(\Sigma^-) = -1$
- For strong production reactions $K^- + p \rightarrow \Xi^- + K^+$ and $\overline{K}^0 + p \rightarrow \Xi^0 + K^+$
 - cascade particles $S(\Xi^{-}) = S(\Xi^{0}) = -2$ if $S(\overline{K}^{0}) = S(K^{-}) = -1$

More on Strangeness

• Let's look at the reactions again

 $\pi^- + p \to K^0 + \Lambda^0$

- This is a strong interaction
 - Strangeness must be conserved
 - S: 0 + 0 → +1 -1
- How about the decays of the final state particles?

-
$$\Lambda^0 \to \pi^- + p$$
 and $K^0 \to \pi^+ + \pi^-$

- These decays are weak interactions so S is not conserved
- $-S: -1 \rightarrow 0 + 0$ and $+1 \rightarrow 0 + 0$
- A not-really-elegant solution
- Leads into the necessity of strange quarks

Isospin Quantum Number

- Strong force does not depend on the charge of the particle
 - Nuclear properties of protons and neutrons are very similar
 - From the studies of mirror nuclei, p-p, p-n and n-n strong interactions are essentially the same
 - If corrected by EM interactions, the x-sec between n-n and p-p are the same
- Since strong force is much stronger than any other forces, we could imagine a new quantum number that applies to all particles
 - Protons and neutrons are two orthogonal mass eigenstates of the same particle like spin up and down states

$$p = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } n = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

PHYS 3446, Spring 2005
Jae Yu

Isospin Quantum Number

- Protons and neutrons are degenerate in mass because of some symmetry of the strong force
 - Isospin symmetry → Under the strong force these two particles appear identical
 - Presence of Electromagnetic or Weak forces breaks this symmetry, distinguishing p from n.
- Isospin works just like spins

Mond

- Protons and neutrons have isospin $\frac{1}{2}$ Isospin doublet
- Three pions, π +, π and π^0 , have almost the same masses
- X-sec by these particles are almost the same after correcting for EM effects
- − Strong force does not distinguish these particles → Isospin triplet

$$\pi^{+} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \pi^{0} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ and } \pi^{-} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

12

Isospin Quantum Number

- This QN is found to be conserved in strong interactions
- But not conserved in EM or Weak interactions
- Third component of isospin QN is assigned to be positive for the particles with larger electric charge
- Isospin is not a space-time symmetry
- Cannot be assigned uniquely to leptons and photons since they are not involved in strong interactions
 - There is something called weak-isospin for weak interactions

Gell-Mann-Nishijima Relation

- Strangeness assignment is based on Gell-Mann-Nishijima relation
 - Electric charge of a hadron can be related to its other quantum numbers V = R + S

$$Q = I_3 + \frac{I}{2} = I_3 + \frac{D+3}{2}$$

- Where Q: hadron electrical charge, I_3 : third component of isospin and Y=B+S, strong hypercharge
- Quantum numbers of several long lived particles follow this rule
- With the discovery of new flavor quantum numbers, charm and bottom, this relationship was modified to include these new additions (Y=B+S+C+B)
 - Since charge and isospin are conserved in strong interactions, strong hypercharge, Y, is also conserved in strong interactions
- This relationship holds in all strong interactions

Quantum numbers for a few hadrons

Hadron	Q	I_3	B	S	Y = (B + S)
		_	-	-	_
π^+	1	1	0	0	0
π^{0}	0	0	0	0	0
π^{-}	-1	-1	0	0	0
K^+	1	1/2	0	1	1
K^0	0	-1/2	0	1	1
η^0	0	0	0	0	0
p	1	1/2	1	0	1
\boldsymbol{n}	0	-1/2	1	0	1
Σ^+	1	1	1	-1	0
Λ^{o}	0	0	1	-1	0
Ξ^-	-1	-1/2	1	-2	-1
Ω^-	-1	0	1	-3	-2

9 * 1

Violation of Quantum Numbers

- The QN we learned are conserved in strong interactions are but many of them are violated in EM or weak interactions
- Three types of weak interactions
 - Hadron decays with only hadrons in the final state

$$\Lambda^0 \to \pi^- + p$$

- Semi-leptonic: both hadrons and leptons are present

$$n \rightarrow p + e^- + \overline{v}_e$$

- Leptonic: only leptons are present

$$\mu^- \rightarrow e^- + \overline{\nu}_e + \nu_\mu$$

Monday, Mar. 28, 2005

Hadronic Weak Decays

• These decays follow selection rules: $|\Delta I_3| = 1/2$ and $|\Delta \tilde{S}| = 1$

		1 51		_
QN	$\Lambda^0 \rightarrow$	π -	р	$ \Delta $
l ₃	0	-1	1/2	1/2
S	-1	0	0	1
QN	$\Sigma^+ \rightarrow$	π^0	р	
I ₃	1	0	1/2	1/2
S	-1	0	0	1
QN	$K_0 \rightarrow$	π^+	π^{-}	
I ₃	- 1/2	1	-1	1/2
S	1	0	0	1
		Λ^0	<u> </u>	
QN	$\Xi^{-} \rightarrow$	Λ°	π	
UN I ₃	<u> </u>	0	-1	1/2 17 1

Semi-leptonic Weak Decays These decays follow selection rules: $|\Delta I_3|=1$ and $|\Delta S|=0$ or $|\Delta I_3|=\frac{1}{2}$ and $|\Delta S|=1$

QN	n→	р	$e^{-}+ \overline{v}_{e}$	$ \Delta $
I ₃	-1/2	1/2		1
S	0	0		0
QN	$\pi^{-} \rightarrow$	μ_	$\overline{\nu}_{\mu}$	
l ₃	-1			1
S	0			0
QN	$K^{+} \rightarrow$	π^0	$\mu^+ + \nu_{\mu}$	
ON I ₃	$\begin{array}{c} K^{+} \rightarrow \\ 1^{1} \\ 1^{1} \\ \end{array}$	π^0 0	$\mu^+ + \nu_{\mu}$	1/2
1			$\mu^+ + \nu_{\mu}$	1/2 1
I ₃		0	$\mu^+ + \nu_{\mu}$ $e^- + \overline{\nu}_e$	1
I ₃ S	1⁄2 1	0 0		1/2 1 1/2

Summary of Weak Decays

- Hadronic weak-decay
 - Selection rules are $|\Delta I_3|=1/2$ and $|\Delta S|=1$
 - $|\Delta I_3|$ =3/2 and $|\Delta S|$ =2 exists but heavily suppressed
- Semi-leptonic weak-decays
 - Type 1: Strangeness conserving
 - Selection rules are: $|\Delta S|=0$, $|\Delta I_3|=1$ and $\Delta I=1$
 - Type 2: Strangeness non-conserving
 - Selection rules are: $|\Delta S|=1$, $|\Delta I_3|=\frac{1}{2}$ and $\Delta I=\frac{1}{2}$ or $\frac{3}{2}$
 - $\Delta I=3/2$ and $|\Delta S|=1$ exist but heavily suppressed

EM Processes

QN	$\pi^0 \rightarrow$	γ	γ	
l ₃	0			
S	0			
QN	$\eta^0 \rightarrow$	γ	γ	
l ₃	0			
S	0			
QN	$\Sigma^0 \rightarrow$	Λ^0	γ	
ا _ع	0	0		
S	-1	-1		

• Strangeness is conserved but total isospin is not – Selection rules are: $|\Delta S|=0$, $|\Delta I_3|=0$ and $\Delta I=1$

Assignments

- 1. Reading assignments: 9.6 and 9.7
- 2. End of chapter problems 9.1, 9.2 and 9.3
- 3. Due for these assignments is next Monday, Apr. 4

