PHYS 3446 – Lecture #16

Monday, Apr. 4, 2005 Dr. **Jae** Yu

• Symmetries

- Why do we care about the symmetry?
- Symmetry in Lagrangian formalism
- Symmetries in quantum mechanical system
- Isospin symmetry
- Local gauge symmetry

Announcements

- 3rd Quiz this Wednesday, Apr. 6
 - Covers: Ch. 9 and 10.5
- Don't forget that you have another opportunity to do your past due homework at 85% of full if you submit the by Wed., Apr. 20
- Will have an individual mid-semester discussion this week

Quantum Numbers

- We've learned about various newly introduced quantum numbers as a patch work to explain experimental observations
 - Lepton numbers
 - Baryon numbers
 - Isospin
 - Strangeness
- Some of these numbers are conserved in certain situation but not in others
 - Very frustrating indeed....
- These are due to lack of quantitative description by an elegant theory

Why symmetry?

 Some of the quantum numbers are conserved in strong interactions but not in electromagnetic and weak interactions

– Inherent reflection of underlying forces

 Understanding conservation or violation of quantum numbers in certain situations is important for formulating quantitative theoretical framework

Why symmetry?

- When does a quantum number conserved?
 - When there is an underlying symmetry in the system
 - When the quantum number is not affected (or is conserved) by (under) changes in the physical system
- Noether's theorem: If there is a conserved quantity associated with a physical system, there exists an underlying invariance or symmetry principle responsible for this conservation.
- Symmetries provide critical restrictions in formulating theories

- Symmetry of a system is defined by any set of transformations that keep the equation of motion unchanged or invariant
- Equations of motion can be obtained through
 - Lagrangian formalism: L=T-V where the Equation of motion is what minimizes the lagrangian L under changes of coordinates
 - Hamiltonian formalism: H=T+V with the equation of motion that minimizes the Hamiltonian under changes of coordinates
- Both these formalisms can be used to discuss symmetries in non-relativistic (or classical cases), relativistic, and quantum mechanical systems

- Consider an isolated non-relativistic physical system of two particles interacting through a potential that only depends on the relative distance between them
- The total kinetic and potential energies of the system are: $T = \frac{1}{2}m_1\dot{\vec{r}_1}^2 + \frac{1}{2}m_2\dot{\vec{r}_2}^2$ and $V = V(\vec{r_1} - \vec{r_2})$
- The equations of motion are then $\frac{d}{dt}\frac{\partial L_{i}}{\partial \dot{\vec{r}}} \frac{\partial L_{i}}{\partial \vec{r}} = 0$ $m_{1}\ddot{\vec{r}_{1}} = -\vec{\nabla}_{1}V\left(\vec{r}_{1} \vec{r}_{2}\right) = -\frac{\partial}{\partial \vec{r}_{1}}V\left(\vec{r}_{1} \vec{r}_{2}\right) \qquad \text{where } \frac{\partial}{\partial \vec{r}_{i}}V\left(\vec{r}_{1} \vec{r}_{2}\right) =$ $m_{2}\ddot{\vec{r}_{2}} = -\vec{\nabla}_{2}V\left(\vec{r}_{1} \vec{r}_{2}\right) = -\frac{\partial}{\partial \vec{r}_{2}}V\left(\vec{r}_{1} \vec{r}_{2}\right) \qquad = -\frac{\partial}{\partial \vec{r}_{2}}V\left(\vec{r}_{1} \vec{r}_{2}\right)$

Monday, Apr. 4, 2005

PHYS 3446, Spring 2005 Jae Yu

7

- If we perform a linear translation of the origin of coordinate system by a constant vector $-\vec{a}$
 - The position vectors of the two particles become

 $\vec{r}_1 \to \vec{r}_1 - \vec{a} \qquad \vec{r}_2 \to \vec{r}_2 - \vec{a}$

- But the equation of motions do not change since $-\vec{a}$ is a constant vector
- This is due to the invariance of the potential V under the translation

$$V' = V(\vec{r}_{1} - \vec{r}_{2}) = V(\vec{r}_{1} - \vec{a} - \vec{r}_{2} + \vec{a}) = V(\vec{r}_{1} - \vec{r}_{2})$$

- This means that the translation of the coordinate system for an isolated two particle system defines a symmetry of the system (remember Noether's theorem?)
- This particular physical system is invariant under spatial translation
- What is the consequence of this invariance?
 - From the form of the potential, the total force is

$$\vec{F}_{tot} = \vec{F}_1 + \vec{F}_2 = -\vec{\nabla}_1 V \left(\vec{r}_1 - \vec{r}_2\right) - \vec{\nabla}_2 V \left(\vec{r}_1 - \vec{r}_2\right) = 0$$

- Since $\frac{\partial V}{\partial \vec{r}_1} = -\frac{\partial V}{\partial \vec{r}_2}$ Why?

Monday, Apr. 4, 2005

- What does this mean?
 - Total momentum of the system is invariant under spatial translation

$$\vec{F}_{tot} = \frac{d\vec{P}_{tot}}{dt} = 0$$

- In other words, the translational symmetry results in momentum conservation
- This holds for multi-particle, multi-variable system as well!!

• For multi-particle system, using Lagrangian L=T-V the equations of motion can be generalized

$$\frac{d}{dt} \frac{\partial L_i}{\partial \vec{r}} - \frac{\partial L_i}{\partial \vec{r}} = 0$$

• By construction, ∂L_i

$$\frac{\partial L_i}{\partial \vec{r}} = \frac{\partial T_i}{\partial \vec{r}} = m_i \dot{\vec{r}} = \vec{p}_i$$

• As previously discussed, for the system with a potential that depends on the relative distance between particles, lagrangian is independent of particulars of the individual coordinate $\frac{\partial L_i}{\partial r_m} = 0$ and thus $\frac{d\vec{p}_i}{dt} = \frac{\partial L_i}{\partial r_i} = 0$

- The momentum p_i can expanded to other kind of momenta for the given spatial translation
 - Rotational translation: Angular momentum
 - Time translation: Energy
 - Rotation in isospin space: Isospin
- The equation $\frac{d\vec{p}_i}{dt} = \frac{\partial L_i}{\partial r_i} = 0$ says that if the Lagrangian of a physical system does not depend on specifics of a given coordinate, the conjugate momentum are conserved
- One can turn this around and state that if a Lagrangian does not depend on some particular coordinate, it must be invariant under translations of this coordinate.

Symmetries in Translation and Conserved quantities

- The translational symmetries of a physical system dgive invariance in the corresponding physical quantities
 - Symmetry under linear translation
 - Linear momentum conservation
 - Symmetry under spatial rotation
 - Angular momentum conservation
 - Symmetry under time translation
 - Energy conservation
 - Symmetry under isospin space rotation
 - Isospin conservation

Symmetry in Quantum Mechanics

- In quantum mechanics, any observable physical quantity corresponds to the expectation value of a Hermitian operator in a given quantum state
 - The expectation value is given as a product of wave function vectors about the physical quantity (operator) $\langle Q \rangle = \langle \psi | Q | \psi \rangle$
 - Wave function $(|\psi\rangle)$ is the probability distribution function of a quantum state at any given space-time coordinates
 - The observable is invariant or conserved if the operator Q commutes with Hamiltonian

Continuous Symmetry

- All symmetry transformations of a theory can be categorized in
 - Continuous symmetry: Symmetry under continuous transformation
 - Spatial translation
 - Time translation
 - Rotation
 - Discrete symmetry: Symmetry under discrete transformation
 - Transformation in discrete quantum mechanical system

Isospin

- If there is isospin symmetry, proton (isospin up, $I_3 = \frac{1}{2}$) and neutron (isospin down, $I_3 = -\frac{1}{2}$) are indistinguishable
- Lets define a new neutron and proton states as some linear combination of the proton, $|p\rangle$, and neutron $|n\rangle$, wave functions
- Then a finite rotation of the vectors in isospin space by an arbitrary angle θ about an isospin axis leads to a new set of transformed vectors $|p'\rangle = \cos \frac{\theta}{2} |p\rangle - \sin \frac{\theta}{2} |n\rangle$

$$|p'\rangle = \cos\frac{\theta}{2}|p\rangle = \sin\frac{\theta}{2}|n\rangle$$
$$|n'\rangle = \sin\frac{\theta}{2}|p\rangle + \cos\frac{\theta}{2}|n\rangle$$

Isospin

- What does the isospin invariance mean to nucleon-nucleon interaction?
- Two nucleon quantum state can be written in the following four combinations of quantum states
 - Proton on proton ($I_3 = +1$) $|\psi_1\rangle = |pp\rangle$
 - Neutron on neutron (I₃=-1) $|\psi_2\rangle = |nn\rangle$
 - Proton on neutron or neutron on proton for both symmetric or anti-symmetric ($I_3=0$)

$$|\psi_{3}\rangle = \frac{1}{\sqrt{2}} (|pn\rangle + |np\rangle) \quad |\psi_{4}\rangle = \frac{1}{\sqrt{2}} (|pn\rangle - |np\rangle)$$

Isospin Tranformation

• For $I_3 = +1$ wave function:

$$\begin{split} |\psi_1'\rangle &= \left| \left(\cos\frac{\theta}{2} p - \sin\frac{\theta}{2} n \right) \left(\cos\frac{\theta}{2} p - \sin\frac{\theta}{2} n \right) \right\rangle \\ &= \cos^2\frac{\theta}{2} |pp\rangle - \cos\frac{\theta}{2} \sin\frac{\theta}{2} (|pn\rangle + |np\rangle) + \sin^2\frac{\theta}{2} |nn\rangle \\ &= \cos^2\frac{\theta}{2} |\psi_1\rangle - \sqrt{2}\cos\frac{\theta}{2}\sin\frac{\theta}{2} |\psi_3\rangle + \sin^2\frac{\theta}{2} |\psi_2\rangle \end{split}$$

- For $I_3 = 0$ anti-symmetric wave function $|\psi_4'\rangle = \frac{1}{\sqrt{2}} \left(\left| \left(\cos \frac{\theta}{2} p - \sin \frac{\theta}{2} n \right) \left(\sin \frac{\theta}{2} p + \cos \frac{\theta}{2} n \right) \right\rangle - \left| \left(\cos \frac{\theta}{2} p - \sin \frac{\theta}{2} n \right) \left(\sin \frac{\theta}{2} p + \cos \frac{\theta}{2} n \right) \right\rangle \right)$ $= \frac{1}{\sqrt{2}} \left(\cos^2 \frac{\theta}{2} + \sin^2 \frac{\theta}{2} \right) \left(|pn\rangle - |np\rangle \right) = |\psi_4\rangle$
 - This state is totally insensitive to isospin rotation singlet combination of isospins (total isospin 0 state)

Monday, Apr. 4, 2005

Isospin Tranformation

- The other three states corresponds to three possible projection state of the total isospin =1 state (triplet state)
- Thus, any two nucleon system can be in a singlet or a triplet state
- If there is isospin symmetry in strong interaction all these states are indistinguishable

Assignments

1. Construct the Lagrangian for an isolated, two particle system under a potential that depends only on the relative distance between the particles and show that the equations of motion from $\frac{d}{dt}\frac{\partial L_i}{\partial \dot{r}} - \frac{\partial L_i}{\partial \vec{r}} = 0$ are

$$m_1 \ddot{\vec{r}}_1 = -\vec{\nabla}_1 V\left(\vec{r}_1 - \vec{r}_2\right) = -\frac{\partial}{\partial \vec{r}_1} V\left(\vec{r}_1 - \vec{r}_2\right)$$
$$m_2 \ddot{\vec{r}}_2 = -\vec{\nabla}_2 V\left(\vec{r}_1 - \vec{r}_2\right) = -\frac{\partial}{\partial \vec{r}_2} V\left(\vec{r}_1 - \vec{r}_2\right)$$

- 2. Prove that if $\psi(\vec{r})$ is a solution for the Schrodinger equation $H\psi(\vec{r}) = \left(-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V(\vec{r})\right)\psi(\vec{r}) = E\psi(\vec{r})$, then $e^{i\alpha}\psi(\vec{r})$ is also a solution for it.
- 3. Due for this is next Monday, Apr. 11

