PHYS 3446 – Lecture #19

Wednesday, Apr. 13, 2005 Dr. **Jae** Yu

- Parity
 - Determination of Parity
 - Parity Violation
- Time Reversal and Charge Conjugation
- The Standard Model
 - Quarks and Leptons
 - Gauge Bosons
 - Symmetry Breaking and the Higgs particle

Announcements

- The final quiz next Wednesday, Apr. 20
 - At 1:05pm, in the class (SH200)
 - Covers: Ch 10 what we cover on Monday, Apr. 18
- Macros for your project analysis ready and released yesterday morning
- Due for your project write up is Friday, April 22
 - How are your analyses coming along?
- Keep in mind the final, final homework due is Apr. 20.
- I still need to see a few more of you for individual semester grade discussion.

Project root and macro file locations

- All hanging from the directory /home/venkat/PHYS3446/ •
- W events •
 - I-- W-E-Nu
 - -- MakeTMBTreeClasses_so.C -- RunMC.C -- TMBTree_bu.C -- TMBTree_bu.h
 - I-- W-Mu-Nu
 - -- MakeTMBTreeClasses_so.C -- RunMC.C -- TMBTree_bu.C -- TMBTree_bu.h
- Z events •
 - I-- Z-E-E
 - |-- MakeTMBTreeClasses_so.C |-- RunMC.C |-- TMBTree_bu.C -- TMBTree_bu.h
 - ·-- Z-Mu-Mu
 - |-- MakeTMBTreeClasses_so.C
 - -- RunMC.C
 - -- TMBTree_bu.C -- TMBTree_bu.h

Output of $Z \rightarrow e + e + X$ macro

Gauge Fields and Mediators

- To keep local gauge invariance, new particles had to be introduced in gauge theories
 - U(1) gauge introduced a new field (particle) that mediates the electromagnetic force: Photon
 - SU(2) gauge introduces three new fields that mediates weak force
 - Charged current mediator: $W^{\scriptscriptstyle +}$ and $W^{\scriptscriptstyle -}$
 - Neutral current: Z⁰
 - SU(3) gauge introduces 8 mediators for the strong force
- Unification of electromagnetic and weak force SU(2)xU(1) introduces a total of four mediators
 - Neutral current: Photon, Z⁰
 - Charged current: W⁺ and W⁻

Parity

The space inversion transformation (mirror image) → Switch right- handed coordinate system to left-handed

$$\begin{pmatrix} c \ t \\ x \\ y \\ z \end{pmatrix} \xrightarrow{P \ a \ r \ i \ t \ y} \begin{pmatrix} c \ t \\ -x \\ -y \\ -z \end{pmatrix}$$

- How is this different than spatial rotation?
 - Rotation is continuous in a given coordinate system
 - Quantum numbers related rotational transformation are continuous
 - Space inversion cannot be obtained through any set of rotational transformation
 - Quantum numbers related to space inversion is discrete

Wednesday, Apr. 13, 2005

PHYS 3446, Spring 2005 Jae Yu

Determination of Parity Quantum Numbers

- How do we find out the intrinsic parity of particles?
 - Use observation of decays and production processes
 - Absolute determination of parity is not possible, just like electrical charge or other quantum numbers.
 - Thus the accepted convention is to assign <u>+1 intrinsic</u> parity to proton, neutron and the Λ hyperon.
 - The parities of other particles are determined relative to these assignments through the analysis of parity conserving interactions involving these particles.

Parity Determination

- When the parity is conserved, it can restrict decay processes that can take place.
- Consider a parity conserving decay: $A \rightarrow B+C$
 - Conservation of angular momentum requires both sides to have the same total angular momentum J.
 - If B and C are spinless, their relative orbital angular momentum (l) must be the same as J(=I+s).
 - Thus conservation of parity implies that

$$\eta_A = \eta_B \eta_C \left(-1\right)^l = \eta_B \eta_C \left(-1\right)^J$$

- If the decay products have spin zero, for the reaction to take place we must have $\eta_A = \eta_B \eta_C$ between the intrinsic parities

Parity Determination

• Therefore, the allowed decays must have

$$0^+ \rightarrow 0^+ + 0^+$$

$$0^+ \rightarrow 0^- + 0^-$$

$$0^{-} \rightarrow 0^{+} + 0^{-}$$

- Where the spin intrinsic parity if particles are expressed as J^P
- The following decays are prohibited under parity conservation $0^+ \rightarrow 0^+ + 0^-$

$$0^{-} \rightarrow 0^{-} + 0^{-}$$

$$0^- \rightarrow 0^+ + 0^+$$

Example 1, π^- parity

• Consider the absorption of low energy π^{-} in deuterium nuclei

 $\pi^- + d \rightarrow n + n$

- The conservation of parity would require $\eta_{\pi^{-}}\eta_{d}(-1)^{l_{i}} = \eta_{n}\eta_{n}(-1)^{l_{f}}$
- Since the intrinsic parity of deuteron is +1, and that of the two neutrons is +1,

$$\eta_{\pi^{-}} = (-1)^{l_f - l_i} = (-1)^{l_f + l_i}$$

• This capture process is known to proceed from an li=0 state, thus we obtain $\eta_{\pi^-} = (-1)^{l_f}$

Example 1, π^{-} parity, cont'd

 Since spin of the deuteron J_d=1, only a few possible states are allowed for the final state neutrons

1)
$$|nn\rangle = |J| = 1$$
, $s = 1$, $l_f = 0$ or $2\rangle$
2) $|nn\rangle = |J| = 1$, $s = 1$, $l_f = 1\rangle$
3) $|nn\rangle = |J| = 1$, $s = 0$, $l_f = 1\rangle$

- Since the two neutrons are identical fermions, their overall wave functions must be anti-symmetric due to Pauli's exclusion principle → leaves only (3) as the possible solution
- Making pion a pseudo-scalar w/ intrinsic parity $\eta_{\pi^-} = -1$

Parity Violation

- Till the observation of "τ-θ" puzzle in cosmic ray decays late 1950's, parity was thought to be conserved in (symmetry of) all fundamental interactions
- The τ and θ particles seem to have identical mass, lifetimes, and spin (J=0) but decay differently $\theta^+ \to \pi^+ + \pi^0$ $\left(\eta_{\theta^+} = \eta_{\pi^+} \eta_{\pi^0} = (-1)^2 = 1\right)$ $\tau^+ \to \pi^+ + \pi^+ + \pi^ \left(\eta_{\tau^+} = \eta_{\pi^+} \eta_{\pi^-} = (-1)^3 = -1\right)$
- These seem to be identical particles. Then, how could the same particle decay in two different manner, violating parity?

Parity Violation

- T.D. Lee and C.N. Yang studied all known weak decays and concluded that there were no evidences of parity conservation in weak decays
 - Postulated that weak interactions violate parity
 - See, <u>http://ccreweb.org/documents/parity/parity.html</u> for more interesting readings
- These turned out to be

$$K^{+} \rightarrow \pi^{+} + \pi^{0} \quad (\mathbf{K}_{\pi 2})$$
$$K^{+} \rightarrow \pi^{+} + \pi^{+} + \pi^{-} (\mathbf{K}_{\pi 3})$$

Time Reversal

• Invert time from t \rightarrow - t .

$$t \underline{T} - t$$

$$\vec{r} \underline{T} \vec{r}$$

$$\vec{p} = m\dot{\vec{r}} \underline{T} - m\dot{\vec{r}} = -\vec{p}$$

$$\vec{L} = \vec{r} \times \vec{p} \underline{T} (\vec{r}) \times (-\vec{p}) = -\vec{r} \times \vec{p} = -\vec{L}$$

• How about Newton's equation of motion?

$$m\frac{d^{2}\vec{r}}{dt^{2}} = \vec{F} = \frac{C}{r^{2}}\hat{r} \quad (-1)^{2}\frac{d^{2}\vec{r}}{dt^{2}} = m\frac{d^{2}\vec{r}}{dt^{2}} = \vec{F} = \frac{C}{r^{2}}\hat{r}$$

– Invariant under time reversal

Wednesday, Apr. 13, 2005

Charge Conjugate

• Conversion of charge from Q \rightarrow - Q .

$$Q \stackrel{\mathbf{C}}{\longrightarrow} -Q$$

$$\vec{E} = c \frac{q}{r^2} \hat{r} \quad \underline{C} \quad c \frac{-q}{r^2} \hat{r} = -\vec{E}$$
$$\vec{B} = cI \int \frac{d\vec{s} \times \hat{r}}{r^2} \quad \underline{C} \quad c(-I) \int \frac{d\vec{s} \times \hat{r}}{r^2} = -\vec{B}$$

• Under this operation, particles become antiparticles

• What happens to the Newton's equation of motion?

$$m\frac{d^{2}\vec{r}}{dt^{2}} = \vec{F} = \frac{C}{r^{2}}\hat{r} \quad \underline{C} \quad m\frac{d^{2}\vec{r}}{dt^{2}} = \frac{q^{2}}{r^{2}}(-1)^{2}\hat{r} = \vec{F}$$

Invariant under charge conjugate
 Wednesday, Apr. 13, 2005
 PHYS 3446, Spring 2005
 Jae Yu

- Prior to 70's, low mass hadrons are thought to be the fundamental constituents of matter, despite some new particles that seemed to have new flavors
 - Even lightest hadrons, protons and neutrons, show some indication of substructure
 - Such as magnetic moment of the neutron
 - Questioning whether they really are fundamental particles
- In 1964 Gell-Mann and Zweig suggested independently that hadrons can be understood as composite of quark constituents
 - Recall that the quantum number assignments, such as strangeness, were only calculational tools rather than real particles

- In late 60's, Jerome Friedman, Henry Kendall and Rich Taylor designed an experiment with electron beam scattering off of hadrons and deuterium at SLAC (Stanford Linear Accelerator Center)
 - Data could be easily understood if protons and neutrons are composed of point-like objects with charges -1/3e and +2/3e.
 - A point-like electrons scattering off of point-like quark partons inside the nucleons and hadrons
 - Correspond to modern day Rutherford scattering
 - Higher energies of the incident electrons could break apart the target particles, revealing the internal structure

- Elastic scattering at high energies can be described well with the elastic form factors measured at low energies, why?
 - Since the interaction is elastic, they behave as if they are point-like particles
- Inelastic scattering, on the other hand, cannot be since the target is broken apart
 - Inelastic scatterings of electrons with large momentum transfer (q²) provides opportunities to probe shorter distances, breaking apart nucleons
 - The fact that the form factor for inelastic scattering at large q² is independent of q² shows that there are point-like object in a nucleon
- Nucleons contain both quarks and glue particles (gluons) both described by individual characteristic momentum distributions (Parton Distribution Functions)

- By early 70's, it was clear that hadrons are not fundamental point-like objects
- But leptons did not show any evidence of internal structure
 - Event at very high energies they still do not show any structure
 - Can be regarded as elementary particles
- The phenomenological understanding along with observation from electron scattering (Deep Inelastic Scattering, DIS) and the quark model
- Resulted in the Standard Model that can describe three of the four known forces along with quarks, leptons and gauge bosons as the fundamental particles

Quarks and Leptons

In SM, there are three families of leptons $\begin{pmatrix} V_e \\ e^- \end{pmatrix} \qquad \begin{pmatrix} V_\mu \\ \mu^- \end{pmatrix} \qquad \begin{pmatrix} V_\tau \\ \tau^- \end{pmatrix}$ ➔ Increasing order of lepton masses Convention used in strong isospin symmetry, higher member of multiplet carries higher electrical charge And three families of quark constituents $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix} +\frac{2}{3}$ All these fundamental particles are fermions w/ spin $\frac{1}{2}\hbar$

Standard Model Elementary Particle Table

• Assumes the following fundamental structure:

• Total of 6 quarks, 6 leptons and 12 force mediators form the entire universe

Quark Content of Mesons

- Meson spins are measured to be integer.
 - They must consist of an even number of quarks
 - They can be described as bound states of quarks
- Quark compositions of some mesons
 - PionsStrange mesons $\pi^+ = u\overline{d}$ $K^+ = u\overline{s}$ $\pi^- = \overline{u}\overline{d}$ $K^- = \overline{u}\overline{s}$ $\pi^0 = \frac{1}{\sqrt{2}}(u\overline{u} d\overline{d})$ $K^0 = d\overline{s}$ $\overline{K}^0 = \overline{ds}$

Assignments

1. No homework today!!!

