PHYS 5326 - Lecture \#9

Wednesday, Feb. 28, 2007
Dr. Jae $\mathfrak{Y u}$

1. Quantum Electro-dynamics (QED)
2. Local Gauge Invariance
3. Introduction of Massless Vector Gauge Field

Announcements

- First term exam will be on Wednesday, Mar. 7
- It will cover up to what we finish today
- The due for all homework up to last week's is Monday, Mar. 19

Prologue

- How is a motion described?
- Motion of a particle or a group of particles can be expressed in terms of the position of the particle at any given time in classical mechanics.
- A state (or a motion) of particle is expressed in terms of wave functions that represent probability of the particle occupying certain position at any given time in Quantum mechanics
- With the operators provide means for obtaining values for observables, such as momentum, energy, etc
- A state or motion in relativistic quantum field theory is expressed in space and time.
- Equation of motion in any framework starts with Lagrangians.

Non-relativistic Equation of Motion for Spin 0 Particle

Energy-momentum relation in classical mechanics give

$$
\frac{\mathbf{p}^{2}}{2 m}+V=E
$$

Quantum prescriptions; $\mathbf{p} \rightarrow \frac{\hbar}{i} \nabla, \quad E \rightarrow i \hbar \frac{\partial}{\partial t}$.
provides the non-relativistic equation of motion for field, ψ, the Schrödinger Equation

$$
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi=i \hbar \frac{\partial \Psi}{\partial t}
$$

$|\Psi|^{2}$ represents the probability of finding the particle of mass m at the position (x, y, z)

Relativistic Equation of Motion for Spin 0 Particle

Relativistic energy-momentum relationship

$$
E^{2}-\mathbf{p}^{2} c^{2}=m^{2} c^{4} \Rightarrow p^{\mu} p_{\mu}-m^{2} c^{2}=0
$$

With four vector notation of quantum prescriptions;
$p_{\mu} \rightarrow \frac{\hbar}{i} \partial_{\mu}$ where $\partial_{\mu}=\frac{\partial}{\partial x^{\mu}} ; \quad\left(\partial_{0}=\frac{1}{c} \frac{\partial}{\partial t}, \partial_{1}=\frac{\partial}{\partial x}, \partial_{2}=\frac{\partial}{\partial y}, \partial_{3}=\frac{\partial}{\partial z}\right)$
Relativistic equation of motion for field, ψ, the Klein-Gordon Equation

$$
-\hbar^{2} \partial_{\mu} \partial^{\mu} \Psi-m^{2} c^{2} \Psi=0
$$

Relativistic Equation of Motion (Dirac Equation) for

 Spin 1/2 ParticleTo avoid $2^{\text {nd }}$ order time derivative term, Dirac attempted to factor relativistic energy-momentum relation

$$
p^{\mu} p_{\mu}-m^{2} c^{2}=0
$$

This works for the case with zero three momentum

$$
\left(p^{0}\right)^{2}-m^{2} c^{2}=\left(p^{0}+m c\right)\left(p^{0}-m c\right)=0
$$

This results in two first order equations

$$
\begin{aligned}
& p^{0}+m c=0 \\
& p^{0}-m c=0
\end{aligned}
$$

PHYS 5326, Spring 2007

Dirac Equation Continued...

The previous prescription does not work for the case with non-0 three momentum
$p^{\mu} p_{\mu}-m^{2} c^{2}=\left(\beta^{k} p_{k}+m c\right)\left(\gamma^{\lambda} p_{\lambda}-m c\right)=$

$$
\beta^{k} \gamma^{\lambda} p_{k} p_{\lambda}-m c\left(\beta^{k}-\gamma^{k}\right) p_{k}-m^{2} c^{2}
$$

The terms linear to momentum should disappear, so $\beta^{k}=\gamma^{k}$
To make it work, we must find coefficients γ^{k} to satisfy: $p^{\mu} p_{\mu}=\gamma^{k} \gamma^{\lambda} p_{k} p_{\lambda}$
$\left(p^{0}\right)^{2}-\left(p^{1}\right)^{2}-\left(p^{2}\right)^{2}-\left(p^{3}\right)^{2}$
$=\left(\gamma^{0}\right)^{2}\left(p^{0}\right)^{2}+\left(\gamma^{1}\right)^{2}\left(p^{1}\right)^{2}+\left(\gamma^{2}\right)^{2}\left(p^{2}\right)^{2}+\left(\gamma^{3}\right)^{2}\left(p^{3}\right)^{2}$
$+\left(\gamma^{0} \gamma^{1}+\gamma^{1} \gamma^{0}\right) p_{0} p_{1}+\left(\gamma^{0} \gamma^{2}+\gamma^{2} \gamma^{0}\right) p_{0} p_{2}+\left(\gamma^{0} \gamma^{3}+\gamma^{3} \gamma^{0}\right) p_{0} p_{3}+$ Other Cross Terms
The coefficients like $\gamma^{0}=1$ and $\gamma^{1}=\gamma^{2}=\gamma^{3}=i$ do not work since they do not eliminate the cross terms.

Dirac Equation Continued...

It would work if these coefficients are matrices that satisfy the conditions

Using gamma matrices with the standard Bjorken and Drell convention

$$
\gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left[\begin{array}{ll}
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
\end{array}\right] \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

Where σ^{i} are Pauli spin matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{3}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Dirac Equation Continued...

Using Pauli matrix as components in coefficient matrices whose smallest size is 4×4, the energy-momentum relation can now be factored

$$
p^{\mu} p_{\mu}-m^{2} c^{2}=\left(\gamma^{k} p_{k}+m c\right)\left(\gamma^{\lambda} p_{\lambda}-m c\right)=0
$$

w/ a solution $\gamma^{\lambda} p_{\lambda}-m C=0$
By applying quantum prescription of momentum $p_{\mu} \rightarrow i \hbar \partial_{\mu}$
Acting the 1-D solution on a wave function, ψ, we obtain Dirac equation

$$
i \hbar \gamma^{k} \partial_{\mu} \psi-m c \psi=0
$$

$$
\psi=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)
$$

Euler-Lagrange Equation

For a conservative force, the force can be expressed as the gradient of the corresponding scalar potential, U

$$
\vec{F}=-\nabla U
$$

Therefore the Newton's law can be written $m \frac{d \vec{v}}{d t}=-\nabla U$.
Starting from Lagrangian $L=T-U=\frac{1}{2} m v^{2}-U$
The 1-D Euler-Lagrange fundamental equation of motion

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)=\frac{\partial L}{\partial q_{i}} \begin{array}{c}
\begin{array}{c}
\ln 1 \mathrm{D} \text { Cartesian } \\
\text { Coordinate system }
\end{array}
\end{array} \begin{array}{l}
\frac{\partial L}{\partial \dot{q}_{1}}=\frac{d T}{d v_{x}}=m v_{x} \\
\frac{\partial L}{\partial q_{1}}=-\frac{\partial U}{\partial x}
\end{array} \\
& \text { Wednessay, Feb. 28, 2007 }
\end{aligned}
$$

Euler-Lagrange equation in QFT

Unlike particles, field occupies regions of space. Therefore in field theory, the motion is expressed in terms of space and time.

Euler-Larange equation for relativistic fields is, therefore,

Klein-Gordon Largangian for scalar (S=0) Field For a single, scalar field ϕ, the Lagrangian is

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2}\left(\frac{m c}{\hbar}\right)^{2} \phi^{2} \\
\text { Since } \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)}=\partial^{\mu} \phi_{i} \text { and } \frac{\partial \mathcal{L}}{\partial \phi_{i}}=-\left(\frac{m c}{\hbar}\right)^{2} \phi_{i}
\end{gathered}
$$

From the Euler-Largange equation, we obtain

$$
\partial_{\mu} \partial^{\mu} \phi+\left(\frac{m c}{\hbar}\right)^{2} \phi=0
$$

This equation is the Klein-Gordon equation describing a free, scalar particle (spin 0) of mass m.

Dirac Largangian for Spinor (S=1/2) Field

For a spinor field ψ, the Lagrangian
$\mathcal{L}=i(\hbar c) \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-\left(m c^{2}\right) \bar{\psi} \psi$
Since $\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \bar{\psi}\right)}=0$ and $\frac{\partial \mathcal{L}}{\partial \bar{\psi}}=i(\hbar c) \gamma^{\mu} \partial_{\mu} \psi-m c^{2} \psi$
From the Euler-Largange equation for $\bar{\psi}$, we obtain

$$
i \gamma^{\mu} \partial_{\mu} \psi-\left(\frac{m c}{\hbar}\right) \psi=0
$$

Dirac equation for a particle of spin $1 / 2$ and mass m. How's Euler Lagrangian equation looks like for ψ ?

Proca Largangian for Vector (S=1) Field

Suppose we take the Lagrangian for a vector field A^{μ}

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{16 \pi}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)+\frac{1}{8 \pi}\left(\frac{m c}{\hbar}\right)^{2} A^{\nu} A_{\nu} \\
& =-\frac{1}{16 \pi} F^{\mu \nu} F_{\mu \nu}+\frac{1}{8 \pi}\left(\frac{m c}{\hbar}\right)^{2} A^{\nu} A_{\nu}
\end{aligned}
$$

Where $q^{\mu v}$ is the field strength tensor in relativistic notation, \mathbf{E} and \mathbf{B} in Maxwell's equation form an anti-symmetic second-rank tensor

$$
F^{\mu v}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -B_{z} & B_{y} \\
E_{y} & B_{z} & 0 & -B_{x} \\
E_{z} & -B_{y} & B_{x} & 0
\end{array}\right)
$$

Proca Largangian for Vector (S=1) Field

Suppose we take the Lagrangian for a vector field A^{μ}

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{16 \pi}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)+\frac{1}{8 \pi}\left(\frac{m c}{\hbar}\right)^{2} A^{\nu} A_{,} \\
& =-\frac{1}{16 \pi} F^{\mu \nu} F_{\mu \nu}+\frac{1}{8 \pi}\left(\frac{m c}{\hbar}\right)^{2} A^{\nu} A_{\nu}
\end{aligned}
$$

Since $\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)}=-\frac{1}{4 \pi}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)$ and $\frac{\partial \mathcal{L}}{\partial A_{\nu}}=\frac{1}{4 \pi}\left(\frac{m C}{\hbar}\right)^{2} A^{\nu}$
From the Euler-Largange equation for A^{μ}, we obtain
$\partial_{\mu}\left(\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}\right)+\left(\frac{m c}{\hbar}\right)^{2} A^{\nu}=\partial_{\mu} F^{\mu \nu}+\left(\frac{m c}{\hbar}\right)^{2} A^{\nu}=0$
Proca equation for a particle of spin 1 and mass m.
For $m=0$, this equation is for an electromagnetic field.

Lagrangians

- Lagrangians we discussed are concocted to produce desired field equations
- \mathcal{L} derived (L=T-V) in classical mechanics
$-\mathcal{L}$ taken as axiomatic in field theory
- The Lagrangian for a particular system is not unique
- Can always multiply by a constant
- Or add a divergence
- Since these do not affect field equations due to cancellations

Homework

- Prove that Fmn can represent Maxwell's equations, pg. 225 of Griffith's book.
- Derive Eq. 11.17 in Griffith's book
- Due is Wednesday, Mar. 7

