PHYS 1443 - Section 001

Lecture \#17

Wednesday, April 13, 2011
Dr. Jaehoon Yu

- Motion of a Group of Objects
- Fundamentals of Rotational Motion
- Rotational Kinematics
- Relationship Between Linear and Angular Quantities
- Torque

Announcements

- Quiz 3 results
- Class average: 20.4/35
- Equivalent to 58.3/100
- Previous results: 60.8/100 and 54.3/100
- Top score: 35/35
- Quiz next Wednesday, Apr. 20
- Beginning of the class
- Covers from CH9.5 to what we finish Monday, Apr. 18
- Colloquium today at 4 pm in SH101

Physics Department The University of Texas at Arlington COLLOQUIUM

Mass distribution function at the time of star formation
Dr. Ram Sagar
Aryabhatta Research Institute of Observational Sciences (ARIES)

4:00p.m Wednesday April 13, 2011 At SHRRM101

Abstract

:

Shape of the initial mass function (MF) has been derived from photometric abservations, of young (age $<1 \mathrm{Myr}$) star clusters located in our galaxy, the Magellanic Clouds and the nearby local group of galaxies. Its study indicates that there is no obvious dependence of the MF slope on either location in the galaxy or age of the young star clusters. The MF slope above one solar mass appears to be independent of the spatial concentration of the star formed as well as galactic characteristics including mpetallicity. Star formation processes may be responsible for the mass segregation observed in a number of young star clusters of our galaxy and the Magellanic Clouds as their ages are much smaller than their dynamical evolution time. Astrophysical implications of these results shall be discussed in the presentation!

> Refreshments will be served in the Physics Lounge at 3:30 pm

Extra Credit: Two Dimensional Collisions

-Proton \#1 with a speed $3.50 \times 10^{5} \mathrm{~m} / \mathrm{s}$ collides elastically with proton \#2 initially at rest. After the collision, proton \#1 moves at an angle of 37° to the horizontal axis and proton \#2 deflects at an angle f to the same axis. Find the final speeds of the two protons and the scattering angle of proton $\# 2, \Phi$. This must be done in much more detail than the book or on page 13 of this lecture note.

- 10 points
-Due beginning of the class Monday, Apr. 18.

Center of Mass and Center of Gravity

The center of mass of any symmetric object fies on the axis of symmetry and on any plane of symmetry, if the object's mass is evenly distributed throughout the body.

How do you think you can determine the CM of the objects that are not symmetric?

Center of Gravity

$\Delta m_{i} g$

One can use gravity to locate CM.

1. Hang the object by one point and draw a vertical line following a plum-bob.
2. Hang the object by another point and do the same.
3. The point where the two lines meet is the CM.

Since a rigid object can be considered as a collection of small masses, one can see the total gravitational force exerted on the object as

$$
\vec{F}_{g}=\sum_{i} \vec{F}_{i}=\sum_{i} \Delta m_{i} \vec{g}=M \vec{g}
$$

What does this equation tell you?

The net effect of these small gravitational forces is equivalent to a single force acting on a point (Center of Gravity) with mass M.

The CoG is the point in an object as if all the gravitational force is acting on!

Motion of a Group of Particles

We've learned that the COM of a system can represent the motion of a system. Therefore, for an isolated system of many particles in which the total mass \mathcal{M} is preserved, the velocity, total momentum, acceleration of the system are

Velocity of the system	$\vec{v}_{C M}=\frac{d \vec{r}_{C M}}{d t}=\frac{d}{d t}\left(\frac{1}{M} \sum m_{i} \vec{r}_{i}\right)=\frac{1}{M} \sum m_{i} \frac{d \vec{r}_{i}}{d t}=\frac{\sum m_{i} \vec{v}_{i}}{M}$
Total Momentum of the system	$\vec{p}_{C M}=M \vec{v}_{C M}=M \frac{\sum m_{i} \vec{v}_{i}}{M}=\sum m_{i} \vec{v}_{i}=\sum \vec{p}=\vec{p}_{\text {tot }}$
Acceleration of the system	$\vec{a}_{C M}=\frac{d \vec{v}_{C M}}{d t}=\frac{d}{d t}\left(\frac{1}{M} \sum m_{i} \vec{v}_{i}\right)=\frac{1}{M} \sum m_{i} \frac{d \vec{v}_{i}}{d t}=\frac{\sum m_{i} \vec{a}_{i}}{M}$

The external force exerting on the system	$\sum \vec{F}_{\text {ext }}=M \vec{a}_{C M}=\sum m_{i} \vec{a}_{i}=\frac{d p_{\text {toi }}}{d t}$

> What about the internal forces?

If net external force is 0
Wednesday, April 13, 2011
$\sum \vec{F}_{\text {ett }}=0=\frac{d \vec{p}_{\text {tot }}}{d t} \quad \vec{p}_{\text {tot }}=$ const
PHYS 1443-001, Spring 2011
Dr. Jaehoon Yu

System's momentum is conserved.

Rotational Motion and Angular Displacement

In a simplest kind of rotation, points on a rigid object moves on circular paths about the axis of rotation.

The angle swept out by a line passing through any point on the body and intersecting the axis of rotation perpendicular is called the angular displacement.
$\Delta \theta=\theta-\theta_{o}$
It's a vector!! So there must be directions...
How do we define directions?
+:if counter-clockwise
-:if clockwise

The direction vector points gets determined based on the right-hand rule. These are just conventions!!

SI Unit of the Angular Displacement

$$
\theta(\text { in radians })=\frac{\text { Arc length }}{\text { Radius }}=\frac{s}{r}
$$

Dimension? None
For one full revolution:
Since the circumference of a circle is $2 \pi r$

$$
\theta=\frac{2 \pi r}{r}=2 \pi \mathrm{rad}
$$

How many degrees is in one radian?
1 radian is $\quad 1 \mathrm{rad}=\frac{360^{\circ}}{2 \pi} \cdot 1 \mathrm{rad}=\frac{180^{\circ}}{\pi} \cdot 1 \mathrm{rad} \cong \frac{180^{\circ}}{3.14 \mathrm{rad}} \cdot 1 \mathrm{rad} \cong 57.3^{\circ}$
How radians is one degree?
And one degrees is $1^{\circ}=\frac{2 \pi}{360^{\circ}} \cdot 1^{\circ}=\frac{\pi}{180^{\circ}} \cdot 1^{\circ} \cong \frac{3.14}{180^{\circ}} \cdot 1^{\circ} \cong 0.0175 \mathrm{rad}$
How many radians are in 10.5 revofutions? $10.5 \mathrm{rev}=10.5 \mathrm{rev} \cdot 2 \pi \frac{\mathrm{rad}}{\mathrm{rev}}=21 \pi(\mathrm{rad})$
Very important: In solving angular problems, all units, degrees or revolutions, must be converted to radians.

Example 10-1

A particular bird's eyes can barely distinguish objects that subtend an angle no smaller than about 3×10^{-4} rad. (a) How many degrees is this? (b) How small an object can the bird just distinguish when flying at a height of 100 m ?

Ex. Adjacent Synchronous Satellites

Synchronous satellites are put into an orbit whose radius is $4.23 \times 10^{7} \mathrm{~m}$. If the angular separation of the two satellites is 2.00 degrees, find the arc length that separates them.

What do we need to find out? The Arc length!!!

$$
\begin{aligned}
& \text { (in radians) }=\frac{\text { Arc length }}{\text { Radius }}=\frac{s}{r} \\
& \begin{array}{c}
\begin{array}{c}
\text { Convert } \\
\text { degrees to } \\
\text { radians }
\end{array}
\end{array} 2.00 \mathrm{deg}\left(\frac{2 \pi \mathrm{rad}}{360 \mathrm{deg}}\right)=0.0349 \mathrm{rad} \\
& s=r \theta=\left(4.23 \times 10^{7} \mathrm{~m}\right)(0.0349 \mathrm{rad}) \\
& =1.48 \times 10^{6} \mathrm{~m}(920 \mathrm{miles})
\end{aligned}
$$

Ex. A Total Eclipse of the Sun

The diameter of the sun is about 400 times greater than that of the moon. By coincidence, the sun is also about 400 times farther from the earth than is the moon. For an observer on the earth, compare the angle subtended by the moon to the angle subtended by the sun and explain why this result leads to a total solar eclipse.

$$
\begin{gathered}
\theta \text { (in radians) }= \\
\frac{\text { Arc length }}{\text { Radius }}= \\
\frac{S_{\text {sun }}}{r_{\text {sun }}}=\frac{400 s_{m}}{400 r_{m}} \\
=\frac{s_{m}}{r_{m}}
\end{gathered}
$$

I can even cover the entire sun with my thumb!! Why?

Wednesday, April 13, 2011

(a)

Because the distance (r) from my eyes to my thumb is far shorter than that to the sun. PHYS 1443-001, Spring 2011

Angular Displacement, Velocity, and Acceleration

Using what we have learned earlier, how would you define the angular displacement?

$$
\Delta \theta=\theta_{f}-\theta_{i}
$$

How about the average angular speed? Unit? rad/s

$$
\bar{\omega} \equiv \frac{\theta_{f}-\theta_{i}}{t_{f}-t_{i}}=\frac{\Delta \theta}{\Delta t}
$$

And the instantaneous angular speed?
Unit? rad/s

$$
\omega \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t}
$$

Unit? rad/s ${ }^{2}$

$$
\bar{\alpha} \equiv \frac{\omega_{f}-\omega_{i}}{t_{f}-t_{i}}=\frac{\Delta \omega}{\Delta t}
$$

And the instantaneous angular acceleration? Unit? rad/s ${ }^{2}$

$$
\alpha \equiv \lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t}
$$

When rotating about a fixed axis, every particle on a rigid object rotates through the same angle and has the same angular speed and angular acceleration.

Wednesday, April 13, 2011

Rotational Kinematics

The first type of motion we have learned in linear kinematics was under the constant acceleration. We will learn about the rotational motion under constant angular acceleration, because these are the simplest motions in both cases.

Just like the case in linear motion, one can obtain
Angular velocity under constant angular acceleration:

$$
\omega_{f}=\omega_{0}+\alpha t
$$

Linearkinematics $v=v_{o}+a t$
Angular displacement under constant angular acceleration:
Linear kinematics $x_{f}=x_{0}+v_{o} t+\frac{1}{2} a t^{2}$

$$
\theta_{f}=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}
$$

One can also obtain
Linear 反inematics $v_{f}^{2}=v_{o}^{2}+2 a\left(x_{f}-x_{i}\right)$

$$
\omega_{f}^{2}=\omega_{0}^{2}+2 \alpha\left(\theta_{f}-\theta_{0}\right)
$$

Problem Solving Strategy

- Visualize the problem by drawing a picture.
- Write down the values that are given for any of the five kinematic variables and convert them to SI units.
- Remember that the unit of the angle must be radians!!
- Verify that the information contains values for at least three of the five kinematic variables. Select the appropriate equation.
- When the motion is divided into segments, remember that the final angular velocity of one segment is the initial velocity for the next.
- Keep in mind that there may be two possible answers to a kinematics problem.

Ex. 10 - 4: Rotational Kinematics

A wheel rotates with a constant angular acceleration of $3.50 \mathrm{rad} / \mathrm{s}^{2}$. If the angular speed of the wheel is $2.00 \mathrm{rad} / \mathrm{s}$ at $t_{i}=0$, a) through what angle does the wheel rotate in 2.00s?

Using the angular displacement formula in the previous slide, one gets

$$
\begin{aligned}
& \theta_{f}-\theta_{i}=\omega t+\frac{1}{2} \alpha t^{2} \\
& =2.00 \times 2.00+\frac{1}{2} 3.50 \times(2.00)^{2}=11.0 \mathrm{rad} \\
& =\frac{11.0}{2 \pi} \mathrm{rev} .=1.75 \mathrm{rev} .
\end{aligned}
$$

Example for Rotational Kinematics cnt'd

What is the angular speed at $\mathrm{t}=2.00 \mathrm{~s}$?
Using the angular speed and acceleration relationship
$\omega_{f}=\omega_{i}+\alpha t=2.00+3.50 \times 2.00=9.00 \mathrm{rad} / \mathrm{s}$
Find the angle through which the wheel rotates between $\mathrm{t}=2.00 \mathrm{~s}$ and $t=3.00 \mathrm{~s}$.

Using the angular kinematic formula
At $\mathrm{t}=2.00 \mathrm{~s} \quad \theta_{t=2}=2.00 \times 2.00+\frac{1}{2} 3.50 \times 2.00=11.0 \mathrm{rad} 2$
At t=3.00s $\quad \theta_{t=3}=2.00 \times 3.00+\frac{1}{2} 3.50 \times(3.00)^{2}=21.8 \mathrm{rad}$
Angular displacement

$$
\Delta \boldsymbol{\theta}=\theta_{3}-\theta_{2}=10.8 \mathrm{rad}=\frac{10.8}{2 \pi} \mathrm{rev}=1.72 \mathrm{rev}
$$

Relationship Between Angular and Linear Quantities

What do we know about a rigid object that rotates about a fixed axis of rotation?

Every particle (or masslet) in the object moves in a circle centered at the same axis of rotation.

When a point rotates, it has both the linear and angular components in its motion.
What is the linear component of the motion you see?

The direction of ω follows the righthand rule.

How do we related this linear component of the motion with angular component?
The arc-length is $l=r \theta$ So the tangential speed v is $\quad v=\frac{d l}{d t}=\frac{d}{d t}(r \theta)=r \frac{d \theta}{d t}=r \omega$

What does this relationship tell you about the tangential speed of the points in the object and their angular speed?:

Although every particle in the object has the same angular speed, its tangential speed differs and is proportional to its distance from the axis of rotation.

PHYS 14 The farther away the particle is from the center of
D rotation, the higher the tangential speed.

Is the lion faster than the horse?

A rotating carousel has one child sitting on a horse near the outer edge and another child on a lion halfway out from the center. (a) Which child has the greater linear speed? (b) Which child has the greater angular speed?

(a) Linear speed is the distance traveled divided by the time interval. So the child sitting at the outer edge travels more distance within the given time than the child sitting closer to the center. Thus, the horse is faster than the lion.
(b) Angular speed is the angle traveled divided by the time interval. The angle both the children travel in the given time interval is the same.
Thus, both the horse and the lion have the same angular speed.

How about the acceleration?

How many different linear acceleration components do you see in a circular motion and what are they? Two

Tangential, a_{t}, and the radial acceleration, a_{r}
Since the tangential speed v is $\quad v=r \omega$
The magnitude of tangential $a_{t}=\frac{d v}{d t}=\frac{d}{d t}(r \omega)=r \frac{d \omega}{d t}=r \alpha$
acceleration a_{t} is
What does this relationship tell you?

Although every particle in the object has the same angular acceleration, its tangential acceleration differs proportional to its distance from the axis of rotation.
The radial or centripetal acceleration a_{r} is $a_{r}=\frac{v^{2}}{r}=\frac{(r \omega)^{2}}{r}=r \omega^{2}$
What does The father away the particle is from the rotation axis, the more radial this tell you? acceleration it receives. In other words, it receives more centripetal force.
Total linear acceleration is
$a=\sqrt{a_{t}^{2}+a_{r}^{2}}=\sqrt{(r \alpha)^{2}+\left(r \omega^{2}\right)^{2}}=r \sqrt{\alpha^{2}+\omega^{4}}$
Wednesday, April 13, 2011
PHYS 1443-001, Spring 2011

Example

(a) What is the linear speed of a child seated 1.2 m from the center of a steadily rotating merry-go-around that makes one complete revolution in 4.0s? (b) What is her total linear acceleration?

First, figure out what the angular speed of the merry-go-around is.

$$
\varpi=\frac{1 r e v}{4.0 s}=\frac{2 \pi}{4.0 s}=1.6 \mathrm{rad} / \mathrm{s}
$$

Using the formula for linear speed

$$
v=r \omega=1.2 m \times 1.6 \mathrm{rad} / \mathrm{s}=1.9 \mathrm{~m} / \mathrm{s}
$$

Since the angular speed is constant, there is no angular acceleration.
Tangential acceleration is $\quad a_{t}=r \alpha=1.2 \mathrm{~m} \times 0 \mathrm{rad} / \mathrm{s}^{2}=0 \mathrm{~m} / \mathrm{s}^{2}$
Radial acceleration is
Thus the total acceleration is

$$
a_{r}=r \varpi^{2}=1.2 \mathrm{~m} \times(1.6 \mathrm{rad} / \mathrm{s})^{2}=3.1 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
a=\sqrt{a_{t}^{2}+a_{r}^{2}}=\sqrt{0+(3.1)^{2}}=3.1 \mathrm{~m} / \mathrm{s}^{2}
$$

20

Example for Rotational Motion

Audio information on compact discs are transmitted digitally through the readout system consisting of laser and lenses. The digital information on the disc are stored by the pits and flat areas on the track. Since the speed of readout system is constant, it reads out the same number of pits and flats in the same time interval. In other words, the linear speed is the same no matter which track is played. a) Assuming the linear speed is 1.3 m / s, find the angular speed of the disc in revolutions per minute when the inner most $(r=23 \mathrm{~mm})$ and outer most tracks $(r=58 \mathrm{~mm})$ are read.

Using the relationship between angular and tangential speed $v=r \omega$

$$
\begin{aligned}
& r=23 \mathrm{~mm} \quad \omega=\frac{v}{r}=\frac{1.3 \mathrm{~m} / \mathrm{s}}{23 \mathrm{~mm}}=\frac{1.3}{23 \times 10^{-3}}=56.5 \mathrm{rad} / \mathrm{s} \\
& =9.00 \mathrm{rev} / \mathrm{s}=5.4 \times 10^{2} \mathrm{rev} / \mathrm{min} \\
& r=58 \mathrm{~mm} \quad \omega=\frac{1.3 \mathrm{~m} / \mathrm{s}}{58 \mathrm{~mm}}=\frac{1.3}{58 \times 10^{-3}}=22.4 \mathrm{rad} / \mathrm{s} \\
& =2.1 \times 10^{2} \mathrm{rev} / \mathrm{min}
\end{aligned}
$$

PHYS 1443-001, Spring 2011
Dr. Jaehoon Yu
b) The maximum playing time of a standard music $C D$ is 74 minutes and 33 seconds. How many revolutions does the disk make during that time?

$$
\begin{aligned}
& \overline{\boldsymbol{\omega}}=\frac{\left(\omega_{i}+\omega_{f}\right)}{2}=\frac{(540+210) \mathrm{rev} / \mathrm{min}}{2}=375 \mathrm{rev} / \mathrm{min} \\
& \boldsymbol{\theta}_{f}=\theta_{i}+\bar{\omega} t=0+\frac{375}{60} \mathrm{rev} / \mathrm{s} \times 4473 \mathrm{~s}=2.8 \times 10^{4} \mathrm{rev}
\end{aligned}
$$

c) What is the total length of the track past through the readout mechanism?

$$
\bar{Z}=v_{t} \Delta t=1.3 \mathrm{~m} / \mathrm{s} \times 4473 \mathrm{~s}=5.8 \times 10^{3} \mathrm{~m}
$$

d) What is the angular acceleration of the CD over the 4473s time interval, assuming constant a?

$$
\alpha=\frac{\left(\omega_{f}-\omega_{i}\right)}{\Delta t}=\frac{(22.4-56.5) \mathrm{rad} / \mathrm{s}}{4473 \mathrm{~s}}=7.6 \times 10^{-3} \mathrm{rad} / \mathrm{s}^{2}
$$

Wednesday, April 13, 2011

