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PHYS 3313 – Section 001
Lecture #22

Monday, Apr. 14, 2014
Dr. Jaehoon Yu

• Barriers and Tunneling
• Alpha Particle Decay
• Use of Schrodinger Equation on Hydrogen Atom
• Solutions for Schrodinger Equation for Hydrogen 

Atom
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Announcements
• Research paper deadline is Monday, Apr. 28
• Research presentation file deadline is Sunday, Apr. 27
• Reminder: Homework #5

– CH6 end of chapter problems: 34, 39, 46, 62 and 65
– Due Wednesday, Apr. 16

• Homework #6
– CH7 end of chapter problems: 7, 8, 9, 12, 17 and 29
– Due on Wednesday, Apr. 23, in class 

• Quiz number 4
– At the beginning of the class Wednesday, Apr. 23
– Covers up to what we finish Monday, Apr. 21



Reminder: Special project #5
• Show that the Schrodinger equation 

becomes Newton’s second law in the 
classical limit.  (15 points)

• Deadline Monday, Apr. 21, 2014
• You MUST have your own answers!
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Tunneling
• Now we consider the situation where classically the particle does not have enough energy to 

surmount the potential barrier, E < V0.

• The quantum mechanical result, however, is one of the most remarkable features of modern 
physics, and there is ample experimental proof of its existence. There is a small, but finite, 
probability that the particle can penetrate the barrier and even emerge on the other side.

• The wave function in region II becomes

• The transmission probability that 
describes the phenomenon of tunneling is
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Uncertainty Explanation
• Consider when κL >> 1 then the transmission probability becomes:

• This violation allowed by the uncertainty principle is equal to the negative kinetic 
energy required! The particle is allowed by quantum mechanics and the uncertainty 
principle to penetrate into a classically forbidden region. The minimum such kinetic 
energy is:
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Analogy with Wave Optics
• If light passing through a glass prism reflects from an internal surface with an angle greater

than the critical angle, total internal reflection occurs. The electromagnetic field, however, is
not exactly zero just outside the prism. Thus, if we bring another prism very close to the first
one, experiments show that the electromagnetic wave (light) appears in the second prism.

• The situation is analogous to the tunneling described here. This effect was observed by
Newton and can be demonstrated with two prisms and a laser. The intensity of the second
light beam decreases exponentially as the distance between the two prisms increases.
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Potential Well

• Consider a particle passing through a potential well region rather than through a potential
barrier.

• Classically, the particle would speed up passing the well region, because K = mv2 / 2 = E - V0.
According to quantum mechanics, reflection and transmission may occur, but the wavelength
inside the potential well is shorter than outside. When the width of the potential well is
precisely equal to half-integral or integral units of the wavelength, the reflected waves may be
out of phase or in phase with the original wave, and cancellations or resonances may occur.
The reflection/cancellation effects can lead to almost pure transmission or pure reflection for
certain wavelengths. For example, at the second boundary (x = L) for a wave passing to the
right, the wave may reflect and be out of phase with the incident wave. The effect would be a
cancellation inside the well.
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Alpha-Particle Decay
• May nuclei heavier than Pb emit alpha particles (nucleus of He). The phenomenon of 

tunneling explains the alpha-particle decay of heavy, radioactive nuclei.
• Inside the nucleus, an alpha particle feels the strong, short-range attractive nuclear 

force as well as the repulsive Coulomb force.
• The nuclear force dominates inside the nuclear radius where the potential is 

approximately a square well.
• The Coulomb force dominates 

outside the nuclear radius.
• The potential barrier at the nuclear 

radius is several times greater than 
the energy of an alpha particle (~5MeV).

• According to quantum mechanics, 
however, the alpha particle can 
“tunnel” through the barrier. Hence 
this is observed as radioactive decay.
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Application of the Schrödinger Equation to the 
Hydrogen Atom

• The approximation of the potential energy of the electron-
proton system is the Coulomb potential: 

• To solve this problem, we use the three-dimensional time-
independent Schrödinger Equation:

• For Hydrogen-like atoms with one electron (He+ or Li++)
• Replace e2 with Ze2 (Z is the atomic number)

• Use appropriate reduced mass: 
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Application of the Schrödinger Equation
 The potential (central force) V(r) depends on the distance r

between the proton and electron.
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symmetry.

• Insert the Coulomb potential into 
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Application of the Schrödinger Equation

• The wave function Ψ is a function of r, θ and .
The equation is separable into three equations of 

independent variables
The solution may be a product of three functions

• We can separate the Schrodinger equation in polar 
coordinate into three separate differential equations, each 
depending only on one coordinate: r, θ, or .
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Solution of the Schrödinger Equation for Hydrogen
• Substitute Ψ into the polar Schrodinger equation and separate the 

resulting equation into three equations: R(r), f(θ), and g().
Separation of Variables
• The derivatives in Schrodinger eq. can be written as

• Substituting them into the polar coord. Schrodinger Eq.

• Multiply both sides by r2 sin2 θ / Rfg
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Solution of the Schrödinger Equation
• Only r and θ appear on the left-hand side and only  appears 

on the right-hand side of the equation
• The left-hand side of the equation cannot change as 

changes.
• The right-hand side cannot change with either r or θ.
• Each side needs to be equal to a constant for the equation to 

be true in all cases.  Set the constant −mℓ
2 equal to the right-

hand side of the reorganized equation

– The sign in this equation must be negative for a valid solution 
• It is convenient to choose a solution to be          .

“azimuthal equation”
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Solution of the Schrödinger Equation
• satisfies the previous equation for any value of mℓ.
• The solution must be single valued in order to have a valid solution 

for any , which requires

• mℓ must be zero or an integer (positive or negative) for this to work
• Now, set the remaining equation equal to −mℓ

2 and divide both 
sides by sin2 and rearrange: 

• Everything depends on r on the left side and θ on the right side of 
the equation.
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Solution of the Schrödinger Equation
• Set each side of the equation equal to constant ℓ(ℓ + 1).

– “Radial Equation”

– “Angular Equation”

• Schrödinger equation has been separated into three ordinary 
second-order differential equations, each containing only one 
variable.

Monday, Apr. 14, 2014 15PHYS 3313-001, Spring 2014                      
Dr. Jaehoon Yu

1
R

r

r2 R
r








2r2

2 E V   l l 1   1
r2

d
dr

r2 dR
dr








2
2 E V 

2

2
l l 1 







R  0

1
sin

d
d

sin
df
d






 l l 1   ml

2

sin2








 f  0



Solution of the Radial Equation
• The radial equation is called the associated Laguerre

equation, and the solutions R that satisfies the appropriate 
boundary conditions are called associated Laguerre
functions.

• Assume the ground state has ℓ = 0, and this requires mℓ = 0.
We obtain

• The derivative of             yields two terms, and we obtain
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Solution of the Radial Equation
• Let’s try a solution                     where A is a normalization constant, 

and a0 is a constant with the dimension of length.
• Take derivatives of R, we obtain.

• To satisfy this equation for any r, each of the two expressions in 
parentheses must be zero.

• Set the second parentheses equal to zero and solve for a0.

• Set the first parentheses equal to zero and solve for E.

• Both equal to the Bohr results
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Principal Quantum Number n
• The principal quantum number, n, results from the 

solution of R(r) in the separated Schrodinger Eq. 
since R(r) includes the potential energy V(r).
The result for this quantized energy is

• The negative sign of the energy E indicates that the 
electron and proton are bound together.
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Quantum Numbers
• The full solution of the radial equation requires an 

introduction of a quantum number, n, which is a non-zero 
positive integer.

• The three quantum numbers:
– n Principal quantum number
– ℓ Orbital angular momentum quantum number
– mℓ Magnetic quantum number

• The boundary conditions put restrictions on these
– n = 1, 2, 3, 4, . . . (n>0) Integer
– ℓ = 0, 1, 2, 3, . . . , n − 1 (ℓ < n) Integer
– mℓ = −ℓ, −ℓ + 1, . . . , 0, 1, . . . , ℓ − 1, ℓ (|mℓ| ≤ ℓ) Integer

• The predicted energy level is
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