Standard Model

A Brief Description by Shahnoor Habib

History of Particle Physics

Earliest times - 1550 AD: The Ancients

1550 - 1900 AD: The Scientific Revolution and Classical Mechanics

1900 - 1964 AD: Quantum Theory

1964 - Present: The Modern View (the Standard Model)

Introduction

- Standard Model a framework to explain elementary particles.
 - Electromagnetism
 - Weak interaction
 - Strong interaction
- SM does not include gravity.
- Biggest success of Standard model unification of weak and electromagnetism.

Particle Physics Prior to Accelerator

- Discovery of electron
- Rutherford scattering experiments led to discovery of nucleus and proton
- Planetary model of atom
- Ouantum Mechanics and development of Charge cloud mode of atom

Planetary model of atom

The Cloud Charge Model

Motivation for the invention of Accelerator

- Questions already answered
 - ➤Atomic spectra and orbits of electrons
 - ➢ Nuclear isotopes
- Questions pending
 - ➢ What is the force behind radioactive decay that produce alpha particles, beta particles and gamma rays?
 - Why protons in the nucleus do not burst out because of electromagnetic repulsion?

Enter the Accelerator

Role of Accelerator in the development of Standard Model

≻ High speed particles

Small wavelength associated with particles

➢ Particle Zoo

➤ More than 100 new particles were discovered

Accelerator

Introduction to Quarks

≻The Quark Proposal

➤Gellmann and Zweig

≻Quarks and antiquarks

➤ Fractional charges

➢Quarks can not be seen individually

➤ Experimental evidence for the presence of quarks

Fundamental matter particles according to SM

Ν	Matter Particles:		
Fundamental: (as far as we know)	Quark (q) Lepton (1)		
Composite:	Baryon (qqq) Meson (qq)		

Baryons are made of three quarks and have half integral spin of h bar.
Mesons are made of quark and antiquark and have 0,1,2, .. spin of h bar.

Fundamental Interactions

- Electromagnetism
 - Force carrier of Electromagnetism
 - Role of Electromagnetism in the formation of atom
 - Why atoms combine to form molecules when atom itself is a neutral entity?
- Weak Interaction
 - Role of weak interaction in the decay of higher mass particles
 - Range of weak interaction
- Strong Interaction
 - Role of strong interaction in the formation of hadrons
 - Color and strong interaction
 - Range of strong interaction
 - Why nucleons join to form nucleus when a nucleon is colorless?

Unification of Weak Interaction and Electromagnetism

- Weinberg, Salam, and Glashow
- Force carrier particles W, Z and photons
- Masses of force carrier particles and symmetry breaking.
- Temperature range where weak and EM are one force.

Timeline of the Universe - Standard Model

Time since 0	Event	Description	Temperature
15 x 10 ⁹ yrs	Now	Galaxies, stars, planets, and us	3 K
10 ⁹ yrs ?	Galaxy formation	bulges and halos of normal galaxies form	20 K
10 ⁶ yrs	Microwave Background	recombination - transparent to photons	3000 K
3 min	Nucleosynthesis	light elements formed	$10^9 { m K}$
6 sec	Electron-Positron pairs	creation of electrons	6 x 10 ⁹ K
2 sec	Neutrinos decouple	creation of neutrino background	10 ¹⁰ K
2 x 10 ⁻⁶ sec	Proton-Antiproton pairs	creation of nucleons	10 ¹³ K
2 x 10 ⁻¹⁰ sec	Electroweak unification	E-M and weak force same	10 ¹⁵ K
10^{-35} sec ?	Inflation	universe exponentially expands by 10^{26}	10 ²⁷ K
10 ⁻³⁵ sec	Grand Unification	E-M/Weak and Strong forces same	10 ²⁷ K
10 ⁻⁴⁴ sec	Quantum Gravity	Unification of all 4 forces	10^{32} K
< 10 ⁻⁴⁴ sec	Planck Era	No concept of space or time?	$> 10^{32} \text{ K}$

Questions remaining for Standard Model

- Three family of quarks
- Why the need for two other family when we see only the fist family in nature?
- Dominance of matter over antimatter
- Dark Matter
- Dark Energy
- Higgs Boson and distribution of mass to particles
- How to incorporate quantum version of gravity in SM?

Beyond Standard Model

- Supersymmetry and shadow particles
- Grand Unification of interactions

Conclusion

- The success of Standard Model to explain
 observed phenomena
- Verification of the subtle predictions of Standard Model by experiments
- Particles predicted by Standard Model have been observed except Higgs Boson.
- Dependence of Standard Model on Higgs Boson
- Supersymmetry an extension of Standard Model but none of the particles predicted by SUSY has been detected.